Answer:
∆H° rxn = - 93 kJ
Explanation:
Recall that a change in standard in enthalpy, ∆H°, can be calculated from the inventory of the energies, H, of the bonds broken minus bonds formed (H according to Hess Law.
We need to find in an appropiate reference table the bond energies for all the species in the reactions and then compute the result.
N₂ (g) + 3H₂ (g) ⇒ 2NH₃ (g)
1 N≡N = 1(945 kJ/mol) 3 H-H = 3 (432 kJ/mol) 6 N-H = 6 ( 389 kJ/mol)
∆H° rxn = ∑ H bonds broken - ∑ H bonds formed
∆H° rxn = [ 1(945 kJ) + 3 (432 kJ) ] - [ 6 (389 k J]
∆H° rxn = 2,241 kJ -2334 kJ = -93 kJ
be careful when reading values from the reference table since you will find listed N-N bond energy (single bond), but we have instead a triple bond, N≡N, we have to use this one .
Explanation:
Lime is added to lower the acidity of lakes when pH levels go too low.
Acidic environment is harmful to aquatic ecosystems. Acidity causes some minerals, such as phosphorus and calcium, in the water to become unavailable to aquatic organisms like plants and fishes ( This means the water hardness is reduced). The low nutrients cause stress and death in the aquatic environment lowering biodiversity. Applying lime raises the pH to neutral levels and improves the health of the aquatic life in the lake. This also improves economic activities in the lake like fishing.
Learn More:
For more on acidicity of lakes check out;
brainly.com/question/3612253
brainly.com/question/3612253
#LearnWithBrainly
Its b Fe(s) <span> Fe</span>2+(aq) + 2e– <span><span> </span>E</span><span> = </span><span>+0.44 V</span>
ωєℓℓ тнє ρнσѕρнσяι¢ α¢ι∂ мσℓє¢υℓєѕ αттα¢н тσ тнє мσℓє¢υℓєѕ σf тнє мιℓк, αи∂ тнαт ιи¢яєαѕєѕ тнє ∂єиѕιту αи∂ тнєи ѕєρєяαтєѕ тнєм fяσм тнє яєѕт σf тнє ℓιqυι∂ ιи ιт. тнє яємαιи∂єя σf тнє ℓιqυι∂ѕ,иσω нανιиg ℓєѕѕ ∂єиѕιту тнαи тнє ρнσѕρнσяι¢ α¢ι∂ѕ & тнє мιℓк мσℓє¢υℓєѕ, ѕσ ιт ιт иσω fℓσαтѕ σи тσρ.
нσρє ι ¢συℓ∂ нєℓρ уσυ.
The equilibrium constant k is actually the ratio of the
concentration of the products over the concentration of reactants at equilibrium. So if the
concentration of products < concentration of reactants, therefore the
constant k will be small. But if the concentration of products >
concentration of reactants, the constant k will be large. In this case the
value is too small (x10^-19), therefore we can say that the reaction favors the
reactant side:
the equilibrium lies far to the left