Explanation:
Molar mass
The mass present in one mole of a specific species .
The molar mass of a compound , can easily be calculated as the sum of the all the individual atom multiplied by the number of total atoms .
(a) P₄
Molar mass of of the atoms are -
Phosphorous , P = 31 g/mol
Molecular mass of P₄ = ( 4 * 31 ) = 124 g/mol .
(b) H₂O
Molar mass of of the atoms are -
Hydrogen , H = 1 g/mol
oxygen , O = 16 g/mol.
Molecular mass of H₂O = ( 2 * 1 ) + ( 1 * 16 ) = 18 g/mol
(c) Ca(NO₃)₂
Molar mass of of the atoms are -
calcium , Ca = 40 g/mol
nitrogen, N = 14 g/mol
oxygen , O = 16 g/mol.
Molecular mass of Ca(NO₃)₂ = ( 1 * 40 ) + ( 2 * 14 ) + ( 6 * 16 ) = 164 g/mol.
(d)CH₃CO₂H (acetic acid)
Molar mass of of the atoms are -
Carbon , C = 12 g/mol.
oxygen , O = 16 g/mol.
Hydrogen , H = 1 g/mol
Molecular mass of CH₃CO₂H =( 2 * 12 ) + (2 * 16 ) + (4 * 1 ) = 60 g/mol.
(e) C₁₂H₂₂O₁₁ (sucrose, cane sugar).
Molar mass of of the atoms are -
Carbon , C = 12 g/mol.
oxygen , O = 16 g/mol.
Hydrogen , H = 1 g/mol
Molecular mass of C₁₂H₂₂O₁₁ = (12 * 12 ) + ( 22 * 1 ) + ( 11 * 16 ) = 342 g/mol.
Answer:
5.6 L
Explanation:
We can apply Charles' Law here since our pressure is constant (will not change inside the refrigerator) and we are relating change in volume with change in temperature:
V₁ / T₁ = V₂ / T₂ where V₁ and T₁ are initial volume and temperature, and V₂ and T₂ are final volume and temperature. Let's plug in what we know and solve for the unknown:
28.0 L / 25 °C = V₂ / 5 °C => V₂ = 5.6 L
5.6 L is our new volume (at 5 °C).
Hi there! Air and sunlight can definitely be reused. Those are abundant and renewable resources. Therefore, A and D are eliminated. There is a limited amount of water, however, it's impossible to run out of it to the point that there's no more on Earth. C is out. The only answer choice that makes sense is coal, because it's a nonrenewable resource, and it takes millions of years to make more of. It's a fossil fuel, so once we use them up, we can't get anymore during our lives. The answer is B: coal.
C. A nearly identical image.