PH= log[H3O+]
10.25=log [H3O+]
[H3O+] = 10^10.25
[H3O+]= 1.778 ×10^10
To determine the number of phosphorus atoms from a given mass, we need to determine the number of moles of the substance by dividing the molar mass which for in this case is equal to 123.88 g/mol for P4. Then, we multiply Avogadro's number. It <span>represents the number of
units in one mole of any substance. This has the value of 6.022 x 10^23 units /
mole.
mole P4 = 158 kg P4 ( 1000 g / 1 kg ) ( 1 mol / 123.88 g ) = 1275.43 mol P4
# of P4 atoms = 1275.43 mol P4 ( 6.022 x 10^23 atoms P4 / 1 mol P4 ) = 7.68x10^26 atoms P4</span>
Answer:

Explanation:
When it comes to electron configuration and orbitals, it's important to first identify what exactly we are trying to identify. Below is a given example:





Looking at the periodic table, identify the alkali metal family on the periodic table, or group one elements:

Notice how each configuration has an exponent of
, representative of a single electron in their s-orbital.
4 Movement of less dense material
3 Heating of cooler material
1 cooling of warmer material
2 movement of denser material