Answer:
Fx = 35.36 N
Fy = 35.36 N
Explanation:
From the question,
The X component of the force is
Fx = Fcos∅.................. Equation 1
Where Fx = X component of the force, F = Force, ∅ = Angle to the horizontal.
Give: F = 50 N, ∅ = 45°
Substitute into equation 1
Fx = 50(cos45°)
Fx = 50(0.7071)
Fx = 35.36 N
Similarly,
For Y component
Fy = Fsin∅
Where F y = Y component
Fy = 50(sin45°)
Fy = 50(0.7071)
Fy = 35.36 N
F = m . g = 76.5 x 9..8 = 749.7
Net Force = 3225 - 749.7 = 2475.3
F = m.a
2475.3 = 76.5 a
a = 32.35
V = at + v1
V = at + 0
V = 32.35 x 0.15
V = 4.8525
Hope this helps
Limestone and dolomite are the rocks present in the locations which leads to the formation of caves.
<h2>Formation of caves</h2>
The type of rocks that once existed in these locations are limestone and dolomite whereas the pH of the nearby groundwater is slightly acidic which is responsible for the formation of caves. Caves are formed by the dissolution of limestone due to acid rain.
<h3>Acid rain</h3>
Rainwater reacts with carbon dioxide from the air and percolates through the soil, which turns into a weak acid. This slowly dissolves out the limestone which become turn to form caves so we can conclude that Limestone and dolomite are the rocks present in the locations which leads to the formation of caves.
Learn more about caves here: brainly.com/question/7965722
Learn more: brainly.com/question/26111031
(a) The kinetic energy of the projectile when it reaches the highest point in its trajectory is 900 J.
(b) The work done in firing the projectile is 2,500 J.
<h3>
Kinetic energy of the projectile at maximum height</h3>
The kinetic energy of the projectile when it reaches the highest point in its trajectory is calculated as follows;
K.E = ¹/₂mv₀ₓ²
where;
- m is mass of the projectile
- v₀ₓ is the initial horizontal component of the velocity at maximum height
<u>Note:</u> At maximum height the final vertical velocity is zero and the final horizontal velocity is equal to the initial horizontal velocity.
K.E = (0.5)(2)(30²)
K.E = 900 J
<h3>Work done in firing the projectile</h3>
Based on the principle of conservation of energy, the work done in firing the projectile is equal to the initial kinetic energy of the projectile.
W = K.E(i) = ¹/₂mv²
where;
- v is the resultant velocity
v = √(30² + 40²)
v = 50 m/s
W = (0.5)(2)(50²)
W = 2,500 J
Thus, the kinetic energy of the projectile when it reaches the highest point in its trajectory is 900 J.
The work done in firing the projectile is 2,500 J.
Learn more about kinetic energy here: brainly.com/question/25959744
#SPJ1