Answer:
spring compressed is 0.724 m
Explanation:
given data
mass = 1.80 kg
spring constant k = 2 × 10² N/m
initial height = 2.25 m
solution
we know from conservation of energy is
mg(h+x) = 0.5 × k × x² ...................1
here x is compression in spring
so put here value in equation 1 we get
1.8 × 9.8 × (2.25+x) = 0.5 × 2× 10² × x²
solve it we get
x = 0.724344
so spring compressed is 0.724 m
Given parameters:
Initial velocity of Coin = 0m/s
Time taken before coin hits ground = 5.7s
Unknown:
Final velocity of the coin = ?
Velocity is displacement with time. To solve this problem, we have to apply one of the equations of motion.
The fitting one of them here is shown below;
V = U + gt
where;
V is the final velocity
U is the initial velocity
g is the acceleration due to gravity
t is the time taken
Here we use positive value of acceleration due to gravity because the coin is falling with the effect of acceleration and not against it.
Now input the parameters and solve;
V = 0 + 9.81 x 5.7
V = 55.917m/s
Therefore, the final velocity is 55.917m/s.
Answer:
C.) Sled Team C 28 kg moving at 12m/s
I'm pretty sure.
The correct answer is:
c. convection.
The heating of magma and the continuous cycle of evolution of the magma creating a convection current is the reason for the evolution of Earths tectonic plates.
Explanation:
Tectonic plates are ready to move because the Earth's lithosphere has higher strength than the underlying asthenosphere. Lateral density changes in the mantle appear in convection. Plate movement is believed to be driven by a succession of the motion of the seafloor apart from the extended ridge (due to variations in topography and density of the crust.
Gravity
The moon doesn't smash into the earth because the gravity from the earth keeps the moon in orbit around it.