1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
a_sh-v [17]
3 years ago
14

Students in a science class were shown three identical bulbs, each with a resistance of 50 Ω, connected to a 1.5-volt battery as

shown in the diagram. The students were told to assume the resistance of the wire is 0 Ω and make a claim as to which bulb has the most current. Which student has correctly justified a claim?
Physics
1 answer:
Rama09 [41]3 years ago
7 0

Answer:

It B

Explanation:

i just now its B because you can just read it and you will get the anwers

You might be interested in
What is the energy of a photon that has the same wavelength as an electron having a kinetic energy of 15 ev?
serg [7]

Answer: 6.268(10)^{-16}J

Explanation:

The kinetic energy of an electron K_{e} is given by the following equation:

K_{e}=\frac{(p_{e})^{2} }{2m_{e}}   (1)

Where:

K_{e}=15eV=2.403^{-18}J=2.403^{-18}\frac{kgm^{2}}{s^{2}}

p_{e} is the momentum of the electron

m_{e}=9.11(10)^{-31}kg  is the mass of the electron

From (1) we can find p_{e}:

p_{e}=\sqrt{2K_{e}m_{e}}    (2)

p_{e}=\sqrt{2(2.403^{-18}J)(9.11(10)^{-31}kg)}  

p_{e}=2.091(10)^{-24}\frac{kgm}{s}   (3)

Now, in order to find the wavelength of the electron \lambda_{e}   with this given kinetic energy (hence momentum), we will use the De Broglie wavelength equation:

\lambda_{e}=\frac{h}{p_{e}}    (4)

Where:

h=6.626(10)^{-34}J.s=6.626(10)^{-34}\frac{m^{2}kg}{s} is the Planck constant

So, we will use the value of p_{e} found in (3) for equation (4):

\lambda_{e}=\frac{6.626(10)^{-34}J.s}{2.091(10)^{-24}\frac{kgm}{s}}    

\lambda_{e}=3.168(10)^{-10}m    (5)

We are told the wavelength of the photon  \lambda_{p} is the same as the wavelength of the electron:

\lambda_{e}=\lambda_{p}=3.168(10)^{-10}m    (6)

Therefore we will use this wavelength to find the energy of the photon E_{p} using the following equation:

E_{p}=\frac{hc}{lambda_{p}}    (7)

Where c=3(10)^{8}m/s  is the spped of light in vacuum

E_{p}=\frac{(6.626(10)^{-34}J.s)(3(10)^{8}m/s)}{3.168(10)^{-10}m}  

Finally:

E_{p}=6.268(10)^{-16}J    

4 0
3 years ago
After 24.0 days 2.00 milligrams of an original 128.0. Milligram sample remain what is the half life of the sample
alina1380 [7]

Answer:

4 days

either multiply 128 by .5 until you get to 2 counting each time or use 2 formulas ln(n2/n1)=-k(t2-t1) to get k then input k into ln(2)=k*t1/2

n2 is final amount and n1 is beginning and t is either time elapsed as in the first formula or the actual half life that is t1/2

Explanation:

5 0
3 years ago
Which statements about velocity are true?
OleMash [197]
<span>the speed of a direction</span>
5 0
3 years ago
Read 2 more answers
I really need help with this to be able to pass this last semester this is about (Circular Motion ) on physics
ankoles [38]
Question 1
To find centripetal acceleration, use the formula : centripetal acceleration = v^2/r
so answer would be (3.71)^2/42.85=0.32 (2d.p.)
Question 2
Force =ma
a= (9.98)^2/31.77=3.1350
Force= 3.1350 * 56.63 = 177.54 (2 d.p.)
4 0
3 years ago
Read 2 more answers
A body is projected upward at an angle of 30 degree to the horizontal at an initial speed of 200ms-.In how many seconds will it
Crazy boy [7]

Answer:

20.41 s

3534.80 m

Explanation:

<em><u>In how many seconds will it reach the ground?</u></em>

We are given the initial velocity of the body, which is 200 m/s at a 30° angle.

We know the acceleration in the vertical direction is -9.8 m/s², assuming that the upwards/right direction is positive and the downwards/left direction is negative.

Since we are using acceleration in the y-direction, let's use the vertical component of the initial velocity.

  • 200 · sin(30) m/s

Let's use the fact that at the top of its trajectory, the body will have a final velocity of 0 m/s.

Now we have one missing variable that we are trying to solve for: time t.

Find the constant acceleration equation that contains v₀, v, a, and t.

  • v = v₀ + at

Substitute known values into the equation.

  • 0 = 200 · sin(30) + (-9.8)t
  • -200 · sin(30) = -9.8t
  • t = 10.20408163

Recall that this is only half of the body's trajectory, so we need to double the time value we found to find the total time the body is in the air.

  • 2t = 20.40816327

The body will reach the ground in 20.41 seconds.

<em><u>How far from the point of projection would it strike? </u></em>

We want to find the displacement in the x-direction for the body.

Let's find the constant acceleration equation that contains time t, that we just found, and displacement (Δx).

  • Δx = v₀t + 1/2at²

Substitute known values into the equation. Remember that we want to use the horizontal component of the initial velocity and that the acceleration in the x-direction is 0 m/s².

  • Δx = (200 · cos(30) · 20.40816327) + 1/2(0)(20.40816327)²
  • Δx = 3534.797567

The body will strike 3534.80 m from the point of projection.

4 0
2 years ago
Other questions:
  • The terminals of a 0.70 Vwatch battery are connected by a 80.0-m-long gold wire with a diameter of 0.200 mm What is the current
    11·1 answer
  • A person pushing a horizontal, uniformly loaded, 25.30 kg wheelbarrow of length L is attempting to get it over a step of height
    7·1 answer
  • I need to calculate a coefficient of linear expansion given the following
    13·1 answer
  • Help ill give you brainliest !!!
    10·1 answer
  • a cylinder of mass 34.5 kg rolls without slipping on a horizontal surface. At a certain instant, its center of mass has a speed
    9·2 answers
  • Explain centripetal force, is it a force? When does it occur, give a cartoon example or a movie example.
    6·1 answer
  • What does the slope of a speed vs time graph means
    11·1 answer
  • Which of the following objects will have the greatest inertia?
    5·1 answer
  • Based on the data given, what is the relationship between mass, gravitational force, speed at impact, and weight of the objects?
    8·1 answer
  • A diffraction grating, ruled with 300 lines per mm, is illuminated with a white light source at normal incidence.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!