Answer:
C. Angle of Attack.
Explanation:
The pilot must adjust the angle of attack parameter. The angle of attack of this plane to get to the desired lift coefficient.
And thus, we have
Lift = Weight
The correct graph is <u>D</u>.
The graph <em>A</em> is a straight line sloping downwards and it shows that the speed of the body is decreasing at a constant rate. Therefore, this s a graph of a body that is under a constant deceleration.
The graph B is a straight line which slopes upwards. Hence the graph shows that the speed of the body increases at a constant rate. Therefore, this is a graph of a body that is accelerating at a constant rate.
The graph C is curved line, which curves upwards. The slope of the curve increases with time. This is therefore, a graph of a body which is under increasing acceleration.
The graph D, however is a straight line parallel to the time axis. The speed of the body has the same value at all times. Therefore, Graph D is the graph which shows the motion of a body with constant speed.
Answer:
Distance will decrease and work will decrease:
F = m a Newton's Second Law
a = F / m decreasing force will decrease acceleration
S = 1/2 a t^2 = 1/2 (F / m) t^2 distance traveled will decrease as force decreases
W = F * S work will decrease as both force and distance decrease
Answer:
232.641374 mph
Explanation:
A race car has a maximum speed of 0.104km/s
Let X represent the speed in miles per hour
Therefore the speed in miles per hour can be calculated as follows
1 km/s = 2,236.936292 mph
0.104km/s = X
X = 0.104 × 2,236.936292
X = 232.641374
Hence the speed in miles per hour is 232.641374 mph
Answer:
<em><u>energy</u></em>
Explanation:
The heating and cooling of molecule will make <em><u>energy</u></em> change their state of matter.