<span>Sphere: (x - 4)^2 + (y + 12)^2 + (z - 8)^2 = 100
Intersection in xy-plane: (x - 4)^2 + (y + 12)^2 = 36
Intersection in xz-plane: DNE
Intersection in yz-plane: (y + 12)^2 + (z - 8)^2 = 84
The desired equation is quite simple. Let's first create an equation for the sphere centered at the origin:
x^2 + y^2 + z^2 = 10^2
Now let's translate that sphere to the desired center (4, -12, 8). To do that, just subtract the center coordinate from the x, y, and z variables. So
(x - 4)^2 + (y - -12)^2 + (z - 8)^2 = 10^2
(x - 4)^2 + (y - -12)^2 + (z - 8)^2 = 100
Might as well deal with that double negative for y, so
(x - 4)^2 + (y + 12)^2 + (z - 8)^2 = 100
And we have the desired equation.
Now for dealing with the coordinate planes. Basically, for each coordinate plane, simply set the coordinate value to 0 for the axis that's not in the desired plane. So for the xy-plane, set the z value to 0 and simplify. So let's do that for each plane:
xy-plane:
(x - 4)^2 + (y + 12)^2 + (z - 8)^2 = 100
(x - 4)^2 + (y + 12)^2 + (0 - 8)^2 = 100
(x - 4)^2 + (y + 12)^2 + (-8)^2 = 100
(x - 4)^2 + (y + 12)^2 + 64 = 100
(x - 4)^2 + (y + 12)^2 = 36
xz-plane:
(x - 4)^2 + (y + 12)^2 + (z - 8)^2 = 100
(x - 4)^2 + (0 + 12)^2 + (z - 8)^2 = 100
(x - 4)^2 + 12^2 + (z - 8)^2 = 100
(x - 4)^2 + 144 + (z - 8)^2 = 100
(x - 4)^2 + (z - 8)^2 = -44
And since there's no possible way to ever get a sum of 2 squares to be equal to a negative number, the answer to this intersection is DNE. This shouldn't be a surprise since the center point is 12 units from this plane and the sphere has a radius of only 10 units.
yz-plane:
(x - 4)^2 + (y + 12)^2 + (z - 8)^2 = 100
(0 - 4)^2 + (y + 12)^2 + (z - 8)^2 = 100
(-4)^2 + (y + 12)^2 + (z - 8)^2 = 100
16 + (y + 12)^2 + (z - 8)^2 = 100
(y + 12)^2 + (z - 8)^2 = 84</span>
8 x 64
=64 x 2 x 4
=128 x 2 x 2
=256 x 2
=512
Answer:
The standard error of the mean is 0.0783.
Step-by-step explanation:
The Central Limit Theorem helps us find the standard error of the mean:
The Central Limit Theorem estabilishes that, for a random variable X, with mean
and standard deviation
, a large sample size can be approximated to a normal distribution with mean
and standard deviation
.
The standard deviation of the sample is the same as the standard error of the mean. So

In this problem, we have that:

So



The standard error of the mean is 0.0783.
6 then thousandths=60,000
1 more thousandth then 10,000=11,000
No hundreths=000
3 more tens then 10,000=40,000
And 4 fewer ones than 10,000=9,996
Add that all together and you get 121, 996
Answer:
(3,3) (2,2) (1,1) (0,0) (-1,-1)
Step-by-step explanation:
the equation for this table will b y=x which is a linear equation and graph