Answer:

Explanation:
<u>Displacement Vector</u>
Suppose an object is located at a position

and then moves at another position at

The displacement vector is directed from the first to the second position and can be found as

If the position is given as magnitude-angle data ( z , α), we can compute its rectangular components as


The question describes the situation where the initial point is the base of the mountain, where both components are zero

The final point is given as a 520 m distance and a 32-degree angle, so


The displacement is

Kepler derived his three laws of planetary motion entirely from
observations of the planets and their motions in the sky.
Newton published his law of universal gravitation almost a hundred
years later. Using some calculus and some analytic geometry, which
any serious sophomore in an engineering college should be able to do,
it can be shown that IF Newton's law of gravitation is correct, then it MUST
lead to Kepler's laws. Gravity, as Newton described it, must make the planets
in their orbits behave exactly as they do.
This demonstration is a tremendous boost for the work of both Kepler
and Newton.
Geometrically, a screw can be viewed as a narrow inclined plane wrapped around a cylinder. Like the other simple machines a screw can amplify force; a small rotational force (torque) on the shaft can exert a large axial force on a load.
Answer:
It [the diamond] would act like a prism, and make a rainbow, or, the light would break up and disappear
Explanation:
that's what I would think at least
I think it's the first one