Answer:
-26 m/s (backward)
Explanation:
We can solve this problem by using the law of conservation of momentum.
In fact, the total momentum momentum of the cannon + ball system must be conserved before and after the explosion.
Before the explosion, they are both at rest, so the total momentum is zero:
p = 0
After the explosion, the total momentum is:

where
M = 1.5 kg is the mass of the cannon
m = 0.52 kg is the mass of the ball
v = +75 m/s is the velocity of the ball
V is the velocity of the cannon
Since the momentum is conserved, we can equate the two expressions:

And solving, we find V:

where the negative sign means the direction is opposite to that of the ball.
Answer:
4.78 m/s^2
Explanation:
A)From he FBD
we can write
Tcosθ= mg
Tsinθ= ma
dividing we get tanθ= a/g
a= g tanθ
a= 9.81 tan26°= 4.78 m/s^2
maximum speed of cheetah is

speed of gazelle is given as

Now the relative speed of Cheetah with respect to Gazelle


now the relative distance between Cheetah and Gazelle is given initially as "d"
now the time taken by Cheetah to catch the Gazelle is given as

so by rearranging the terms we can say


so above is the relation between all given variable
Answer:
12mph in 2hrs and 3mph in 0.5hrs the total distance would be 12*2 and 3*0.5 which would be 24 and 1.5 so we add those 24+1.5= 25.5. The answer would be 25.5