1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
melamori03 [73]
2 years ago
8

Compute the solution to x + 2x + 2x = 0 for Xo = 0 mm, vo = 1 mm/s and write down the closed-form expression for the response.

Engineering
1 answer:
Nutka1998 [239]2 years ago
6 0

Answer:

β = \frac{c}{\sqrt{km} } =  0.7071 ≈ 1 ( damping condition )

closed-form expression for the response is attached below

Explanation:

Given :  x + 2x + 2x = 0   for Xo = 0 mm and Vo = 1 mm/s

computing a solution :

M = 1,

c = 2,

k = 2,

Wn = \sqrt{\frac{k}{m} }  = \sqrt{2}  

next we determine the damping condition using the damping formula

β = \frac{c}{\sqrt{km} } =  0.7071 ≈ 1

from the condition above it can be said that the damping condition indicates underdamping

attached below is the closed form expression for the response

You might be interested in
The flowchart below shows the design steps required to build a working model.
AlekseyPX

Question:

1) test the model and analyze the results of the test

2) building the model and observing it

3) observing the model and reporting results

w

4) designing the model and drawing conclusions​

Answer:

The correct option is;

1) Test the model and analyze the results of the test

Explanation:

Based on the flowchart, a model improvement process involves the implementation of a process or model improvement cycle such as the Plan Do Study Act, PDSA cycle, however feedback to the process will be be gotten from testing the model and analyzing the results of the tests. When grey areas or aspects of the model are found that cause the system to malfunction are determined, steps should then be taken to improve the performance of the model.

4 0
3 years ago
A cast-iron tube is used to support a compressive load. Knowing that E 5 10 3 106 psi and that the maximum allowable change in l
Papessa [141]

Answer:

(a) 2.5 ksi

(b) 0.1075 in

Explanation:

(a)

E=\frac {\sigma}{\epsilon}

Making \sigma the subject then

\sigma=E\epsilon

where \sigma is the stress and \epsilon is the strain

Since strain is given as 0.025% of the length then strain is \frac {0.025}{100}=0.00025

Now substituting E for 10\times 10^{6} psi then

\sigma=(10\times 10^{6} psi)\times 0.00025=2500 si= 2.5 ksi

(b)

Stress, \sigma= \frac {F}{A} making A the subject then

A=\frac {F}{\sigma}

A=\frac {\pi(d_o^{2}-d_i^{2})}{4}

where d is the diameter and subscripts o and i denote outer and inner respectively.

We know that 2t=d_o - d_i where t is thickness

Now substituting

\frac {\pi(d_o^{2}-d_i^{2})}{4}=\frac {1600}{2500}

\pi(d_o^{2}-d_i^{2})=\frac {1600}{2500}\times 4

(d_o^{2}-d_i^{2})=\frac {1600}{2500\times \pi}\times 4

But the outer diameter is given as 2 in hence

(2^{2}-d_i^{2})=\frac {1600}{2500\times \pi}\times 4

2^{2}-(\frac {1600}{2500\times \pi}\times 4)=d_i^{2}

d_i=\sqrt {2^{2}-(\frac {1600}{2500\times \pi}\times 4)}=1.784692324 in\approx 1.785 in

As already mentioned, 2t=d_o - d_i hence t=0.5(d_o - d_i)

t=0.5(2-1.785)=0.1075 in

3 0
3 years ago
A PMOS device with VT P = −1.2 V has a drain current iD = 0.5 mA when vSG = 3 V and vSD = 5 V. Calculate the drain current when:
Ksju [112]
The answer is b ! Hope I helped
7 0
3 years ago
A thick steel slab ( 7800 kg/m3, 480 J/kg·K, 50 W/m·K) is initially at 300°C and is cooled by water jets impinging on one of its
AleksandrR [38]

Answer: 67.392s

Explanation: detailed calculation is shown below

4 0
3 years ago
Read 2 more answers
A silicon carbide plate fractured in bending when a blunt load was applied to the plate center. The distance between the fractur
Amanda [17]

Question in order:

A silicon carbide plate fractures in bending when a blunt load was applied to the plate center. The distance between the fracture origin and the mirror/mist boundary on the fracture surface was 0.796 mm. To determine the stress used to break the plate, three samples of the same material were tested and produced the following. What is the estimate of the stress present at the time of fracture for the original plate?

Mirror Radius (mm) Bending Failure Stress (MPa)

0.603                         225

0.203                         368

0.162                         442

Answer:

191 MPa

Explanation:

Failure stress of bending is Inversely proportional to the mirror radius

Bending Stress = \frac{1}{(Mirror Radius)^{n}}

At mirror radius 1 = 0.603 mm   Bending stress 1 = 225 Mpa..............(1)

At mirror radius 2 = 0.203 mm  Bending stress 2 = 368 Mpa...............(2)

At mirror radius 3 = 0.162 mm   Bending stress 3 = 442 Mpa...............(3)

comparing case 1 and 2 using the above equation

\frac{Stress 1}{Stress 2} = ({\frac{Radius 2}{Radius 1}})^{n_1}

\frac{225}{368} = ({\frac{0.203}{0.603}})^{n_1}

0.6114 = (0.3366)^{n_1}

Taking the natural logarithm of both side

ln(0.6114) = n ln(0.3366)

n₁ = ln(0.6114)/ln(0.3366)

n₁ = 0.452

comparing case 2 and 3 using the above equation

\frac{Stress 2}{Stress 3} = ({\frac{Radius 3}{Radius 2}})^{n_2}

\frac{368}{442} = ({\frac{0.162}{0.203}})^{n_2}

0.8326 = (0.7980)^{n_2}

Taking the natural logarithm of both side

ln(0.8326) = n ln(0.7980)

n₂ = ln(0.8326)/ln(0.7980)

n₂ = 0.821

comparing case 1 and 3 using the above equation

\frac{Stress 1}{Stress 3} = ({\frac{Radius 3}{Radius 1}})^{n_3}

\frac{225}{442} = ({\frac{0.162}{0.603}})^{n_3}

0.5090 = (0.2687)^{n_3}

Taking the natural logarithm of both side

ln(0.5090) = n ln(0.2687)

n₃ = ln(0.5090)/ln(0.2687)

n₃ = 0.514

average for n

n = \frac{n_1 + n_2 + n_3}{3}

n = \frac{0.452 +0.821 + 0.514}{3}

n = 0.596

Hence to get bending stress x at mirror radius 0.796

\frac{Stress x}{Stress 3} = ({\frac{Radius 3}{Radius x}})^{0.596}

\frac{Stress x}{225} = ({\frac{0.603}{0.796}})^{0.596}

\frac{Stress x}{225} = 0.8475

stress x = 191 MPa

3 0
3 years ago
Other questions:
  • Soap is a very interesting chemical. We even discussed it on the discussion board. How does it work, exactly?
    7·1 answer
  • What is a thermal reservoir?
    15·1 answer
  • A 2.2-kg model rocket is launched vertically and reaches an altitude of 70 m with a speed of 30 m/s at the end of powered flight
    5·1 answer
  • (a) Consider a germanium semiconductor at T 300 K. Calculate the thermal equilibrium electron and hole concentrations for (i) Nd
    7·1 answer
  • How would your priorities change if the fine on the library book was $10 a day?
    14·1 answer
  • Unitate de masura in SI pt F​
    11·1 answer
  • ⊂who else is obsessed with the ornail
    9·1 answer
  • Technician A says power steering pumps can be engine driven. Technician B says power steering
    9·1 answer
  • Explain moment of inertia<br>​
    9·1 answer
  • An electrical layout is a drawing that indicates how the ________ of a circuit will be connected to one another and where the wi
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!