Answer:
When the uneven burning of the fuel takes place due to the incorrect air/fuel mixture inside the engine cylinder, a knocking sound is observed. This is called as the engine knocking.
Explanation:
When the uneven burning of the fuel takes place due to the incorrect air/fuel mixture inside the engine cylinder, a knocking sound is observed. This is called as the engine knocking.
The engine knock problem can be caused due to the following reason
a) When the octane rating of the fuel used is low.
b) The deposition of the carbon around the cylinder walls takes place.
c) The spark plug used in the vehicle is not correct.
Answer:

Explanation:
To solve this problem we use the expression for the temperature film

Then, we have to compute the Reynolds number

Re<5*10^{5}, hence, this case if about a laminar flow.
Then, we compute the Nusselt number

but we also now that

but the average heat transfer coefficient is h=2hx
h=2(8.48)=16.97W/m^{2}K
Finally we have that the heat transfer is

In this solution we took values for water properties of
v=16.96*10^{-6}m^{2}s
Pr=0.699
k=26.56*10^{-3}W/mK
A=1*0.5m^{2}
I hope this is useful for you
regards
Answer: hello some parts of your question is missing attached below is the missing information
The radiator of a car is a type of heat exchanger. Hot fluid coming from the car engine, called the coolant, flows through aluminum radiator tubes of thickness d that release heat to the outside air by conduction. The average temperature gradient between the coolant and the outside air is about 130 K/mm . The term ΔT/d is called the temperature gradient which is the temperature difference ΔT between coolant inside and the air outside per unit thickness of tube
answer : Total surface area = 3/2 * area of old radiator
Explanation:
we will use this relation
K = 
change in T = ΔT
therefore New Area ( A ) = 3/2 * area of old radiator
Given that the thermal conductivity is the same in the new and old radiators
Answer:
Impulse =14937.9 N
tangential force =14937.9 N
Explanation:
Given that
Mass of car m= 800 kg
initial velocity u=0
Final velocity v=390 km/hr
Final velocity v=108.3 m/s
So change in linear momentum P= m x v
P= 800 x 108.3
P=86640 kg.m/s
We know that impulse force F= P/t
So F= 86640/5.8 N
F=14937.9 N
Impulse force F= 14937.9 N
We know that
v=u + at
108.3 = 0 + a x 5.8

So tangential force F= m x a
F=18.66 x 800
F=14937.9 N