Answer:
X₃₁ = 0.58 m and X₃₂ = -1.38 m
Explanation:
For this exercise we use Newton's second law where the force is the Coulomb force
F₁₃ - F₂₃ = 0
F₁₃ = F₂₃
Since all charges are of the same sign, forces are repulsive
F₁₃ = k q₁ q₃ / r₁₃²
F₂₃ = k q₂ q₃ / r₂₃²
Let's find the distances
r₁₃ = x₃- 0
r₂₃ = 2 –x₃
We substitute
k q q / x₃² = k 4q q / (2-x₃)²
q² (2 - x₃)² = 4 q² x₃²
4- 4x₃ + x₃² = 4 x₃²
5x₃² + 4 x₃ - 4 = 0
We solve the quadratic equation
x₃ = [-4 ±√(16 - 4 5 (-4)) ] / 2 5
x₃ = [-4 ± 9.80] 10
X₃₁ = 0.58 m
X₃₂ = -1.38 m
For this two distance it is given that the two forces are equal
The appropriate response is Gallium. It is a concoction component with image Ga and nuclear number 31. It is in gathering 13 of the occasional table and subsequently has similitudes to alternate metals of the gathering, aluminum, indium, and thallium.
<span>I'll tell you how to do it but you must crunch the numbers.
Use Kepler's 3rd Law
T^2 = k R^3
where k = 4(pi)^2/ GM
G =gravitational constant = 6.67300 × 10-11 m3 kg-1 s-2
M = mass of this new planet
pi = 3.14159265
T =3.09 days = 266976 seconds
R = (579,000,000km)/9 = 64333333.3 km
a)
Solve Kepler's 3rd Law for M. Your answer will be in kg
b)
mass of the sun = 1.98892 × 10^30 kilograms
Form the ratio
M(planet)/M(sun) </span>
The new velocity after 4 s is 40 m/s
The height of the spaceship above the ground after 5 seconds is 1,127.5 m
The given parameters for the first question;
- initial velocity of the car, u = 76 m/s
- acceleration of the car, a = - 9 m/s²
The new velocity after 4 s is calculated as;
v = u + at
v = 76 + (-9)(4)
v = 76 - 36
v = 40 m/s
(5)
The given parameters;
- height above the ground, h = 500 m
- velocity of spaceship, u = 150 m/s
The height of the spaceship above the ground after 5 seconds is calculated as;

Learn more here: brainly.com/question/24527971