Displacement from the center line for minimum intensity is 1.35 mm , width of the slit is 0.75 so Wavelength of the light is 506.25.
<h3>How to find Wavelength of the light?</h3>
When a wave is bent by an obstruction whose dimensions are similar to the wavelength, diffraction is observed. We can disregard the effects of extremes because the Fraunhofer diffraction is the most straightforward scenario and the obstacle is a long, narrow slit.
This is a straightforward situation in which we can apply the
Fraunhofer single slit diffraction equation:
y = mλD/a
Where:
y = Displacement from the center line for minimum intensity = 1.35 mm
λ = wavelength of the light.
D = distance
a = width of the slit = 0.75
m = order number = 1
Solving for λ
λ = y + a/ mD
Changing the information that the issue has provided:
λ = 1.35 * 10^-3 + 0.75 * 10^-3 / 1*2
=5.0625 *10^-7 = 506.25
so
Wavelength of the light 506.25.
To learn more about Wavelength of the light refer to:
brainly.com/question/15413360
#SPJ4
Answer:

Explanation:
Given that,
The distance between two spheres, r = 25 cm = 0.25 m
The capacitance, C = 26 pF = 26×10⁻¹² F
Charge, Q = 12 nC = 12 × 10⁻⁹ C
We need to find the work done in moving the charge. We know that, work done is given by :

Put all the values,

So, the work done is
.
Answer:
An increase in air temperature because of its compression.
Explanation:
The Gay-Lussac's Law states that a gas pressure is directly proportional to its temperature in an enclosed system to constant volume.
<em>where P: is the gas pressure, T: is the gas temperature and k: is a constant.</em>
Therefore, due to Gay-Lussac's Law, when the plunger is pushed down very rapidly, the pressure of the air increase, which leads to its temperature increase. That is why cotton flashes and burns.
I hope it helps you!
Onduction in gas is slower than in liquids and solids because the particles in a gas collide less often. Conduction in metals is faster because the electrons are free to move about