<u>Answer:</u> The concentration of radon after the given time is 
<u>Explanation:</u>
All the radioactive reactions follows first order kinetics.
The equation used to calculate half life for first order kinetics:

We are given:

Putting values in above equation, we get:

Rate law expression for first order kinetics is given by the equation:
![k=\frac{2.303}{t}\log\frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = 
t = time taken for decay process = 3.00 days
= initial amount of the reactant = 
[A] = amount left after decay process = ?
Putting values in above equation, we get:
![0.181days^{-1}=\frac{2.303}{3.00days}\log\frac{1.45\times 10^{-6}}{[A]}](https://tex.z-dn.net/?f=0.181days%5E%7B-1%7D%3D%5Cfrac%7B2.303%7D%7B3.00days%7D%5Clog%5Cfrac%7B1.45%5Ctimes%2010%5E%7B-6%7D%7D%7B%5BA%5D%7D)
![[A]=3.83\times 10^{-30}mol/L](https://tex.z-dn.net/?f=%5BA%5D%3D3.83%5Ctimes%2010%5E%7B-30%7Dmol%2FL)
Hence, the concentration of radon after the given time is 
Answer:
Write down the phases and what happens during each phase.
Explanation:
The number with a lower value is the number of protons and the number with a higher value is the mass
Answer:
If you have ever been in a room when a piping hot pizza was delivered, you have been made aware of the fact that gaseous molecules can quickly spread throughout a room, as evidenced by the pleasant aroma that soon reaches your nose. Although gaseous molecules travel at tremendous speeds (hundreds of meters per second), they collide with other gaseous molecules and travel in many different directions before reaching the desired target.
Explanation:
hope this helps
Because the sub gives us heat when the moon blocks it it also blocks the path of heat