Answer:Lone pairs are the valence electron pair of any element which do not take part in bonding but affect the shape of molecules. Bond pairs or shared pairs are the electron pair which does both affect the geometry of molecules and take part in chemical bonding. These are form due to sharing of electrons.
Explanation:
Repeat trials multiple times
Answer:
Axial
Explanation:
In the most stable conformation of Cis-3-tert-Butylcyclohexanol, the tert-butyl group is at equatorial position and the alcohol group is in the axial position.
If the tert-butyl group is placed in equatorial position, repulsions are minimized. The bulkier the group, the greater the energy difference between the axial and equatorial conformers. Hence for a ring having a bulky substituent, such bulky substituent is better placed in the equatorial position.
The energy difference between the conformers of Cis-3-tert-Butylcyclohexanol is so high that the compound is almost "frozen" in a conformation where the tert-butyl groups are equatorial and the -OH groups are axial. This conformer is more stable by 24 KJ/mol.
Answer:
D. In both, vibrations occur in a parallel direction to the direction of the wave.
Explanation:
It is not true that in both mechanical and electromagnetic waves, vibrations occur in parallel direction to the direction of the wave.
As with all waves, they are disturbances that transfers energy without moving the materials of the medium.
- Electromagnetic waves have only one way of propagation which is a vibration in both parallel and longitudinal direction.
- Mechanical waves can be propagated either in a parallel direction or longitudinal direction and not both.
Answer:
2.893 x 10⁻³ mol NaOH
[HCOOH] = 0.5786 mol/L
Explanation:
The balanced reaction equation is:
HCOOH + NaOH ⇒ NaHCOO + H₂O
At the endpoint in the titration, the amount of base added is just enough to react with all the formic acid present. So first we will calculate the moles of base added and use the molar ratio from the reaction equation to find the moles of formic acid that must have been present. Then we can find the concentration of formic acid.
The moles of base added is calculated as follows:
n = CV = (0.1088 mol/L)(26.59 mL) = 2.892992 mmol NaOH
Extra significant figures are kept to avoid round-off errors.
Now we relate the amount of NaOH to the amount of HCOOH through the molar ratio of 1:1.
(2.892992 mmol NaOH)(1 HCOOH/1 NaOH) = 2.892992 mmol HCOOH
The concentration of HCOOH to the correct number of significant figures is then calculated as follows:
C = n/V = (2.892992 mmol) / (5.00 mL) = 0.5786 mol/L
The question also asks to calculate the moles of base, so we convert millimoles to moles:
(2.892992 mmol NaOH)(1 mol/1000 mmol) = 2.893 x 10⁻³ mol NaOH