Answer:
32/2 or 16.5
Step-by-step explanation:
Answer:
1,000
Step-by-step explanation:
47 to 0.047 moves 3 places
47, 4.7, 0.47, 0.047
this means that the power of then used should have 3 0's
making the power of ten 1,000
Answer:

We can find the second moment given by:

And we can calculate the variance with this formula:
![Var(X) =E(X^2) -[E(X)]^2 = 7.496 -(2.5)^2 = 1.246](https://tex.z-dn.net/?f=%20Var%28X%29%20%3DE%28X%5E2%29%20-%5BE%28X%29%5D%5E2%20%3D%207.496%20-%282.5%29%5E2%20%3D%201.246)
And the deviation is:

Step-by-step explanation:
For this case we have the following probability distribution given:
X 0 1 2 3 4 5
P(X) 0.031 0.156 0.313 0.313 0.156 0.031
The expected value of a random variable X is the n-th moment about zero of a probability density function f(x) if X is continuous, or the weighted average for a discrete probability distribution, if X is discrete.
The variance of a random variable X represent the spread of the possible values of the variable. The variance of X is written as Var(X).
We can verify that:

And 
So then we have a probability distribution
We can calculate the expected value with the following formula:

We can find the second moment given by:

And we can calculate the variance with this formula:
![Var(X) =E(X^2) -[E(X)]^2 = 7.496 -(2.5)^2 = 1.246](https://tex.z-dn.net/?f=%20Var%28X%29%20%3DE%28X%5E2%29%20-%5BE%28X%29%5D%5E2%20%3D%207.496%20-%282.5%29%5E2%20%3D%201.246)
And the deviation is:

Hello!
To find the interquartile range, subtract the value of the upper quartile from the value of the lower quartile.
33 - 25 = 8
The interquartile range is 8. Hope I helped! :3