It’s 2/10 there you go since there’s no 0 infort of the 2 it’s always a 10
tan 44 = h/ x
x = 15 ft * sin 26
so
h = x * tan 44
= (15 ft * sin 26) (tan 44 )
so the anser is D
hope this would help you
Answer:
The factors of 2q²-5pq-2q+5p are (2q-5p) (q-1)....
Step-by-step explanation:
The given expression is:
2q²-5pq-2q+5p
Make a pair of first two terms and last two terms:
(2q²-5pq) - (2q-5p)
Now factor out the common factor from each group.
Note that there is no common factor in second group. So we will take 1 as a common factor.
q(2q-5p) -1(2q-5p)
Now factor the polynomial by factoring out the G.C.F, 2q-5p
(2q-5p) (q-1)
Thus the factors of 2q²-5pq-2q+5p are (2q-5p) (q-1)....
Steps:
1) determine the domain
2) determine the extreme limits of the function
3) determine critical points (where the derivative is zero)
4) determine the intercepts with the axis
5) do a table
6) put the data on a system of coordinates
7) graph: join the points with the best smooth curve
Solution:
1) domain
The logarithmic function is defined for positive real numbers, then you need to state x - 3 > 0
=> x > 3 <-------- domain
2) extreme limits of the function
Limit log (x - 3) when x → ∞ = ∞
Limit log (x - 3) when x → 3+ = - ∞ => the line x = 3 is a vertical asymptote
3) critical points
dy / dx = 0 => 1 / x - 3 which is never true, so there are not critical points (not relative maxima or minima)
4) determine the intercepts with the axis
x-intercept: y = 0 => log (x - 3) = 0 => x - 3 = 1 => x = 4
y-intercept: The function never intercepts the y-axis because x cannot not be 0.
5) do a table
x y = log (x - 3)
limit x → 3+ - ∞
3.000000001 log (3.000000001 -3) = -9
3.0001 log (3.0001 - 3) = - 4
3.1 log (3.1 - 3) = - 1
4 log (4 - 3) = 0
13 log (13 - 3) = 1
103 log (103 - 3) = 10
lim x → ∞ ∞
Now, with all that information you can graph the function: put the data on the coordinate system and join the points with a smooth curve.