Answer:
what is the question
Step-by-step explanation:
Answer:
y = (x - 2)² - 9 Vertex form
y = x² - 4x - 5 Standard form
Step-by-step explanation:
vertex = (h, k) = (2, -9)
Vertex form
y = a(x - h)² + k
y = a(x - 2)² - 9
find "a" using point (5, 0)
0 = a(5 - 2)² - 9
0 = a(3)² - 9
0 = 9a - 9
9 = 9a
a = 1
y = (x - 2)² - 9
Standard form
y = (x² - 4x + 4) - 9
y = x² - 4x - 5
Answer: x1=1 x2=-2 and x3=2
Step-by-step explanation:
1st x1=1 is 1 of the roots , so
F(1)=1-1-4+4=0 - true
So lets divide x^3-x^2-4x+4 by (x-x1), i.e (x^3-x^2-4x+4) /(x-1)=(x^2-4)
x^2-4 can be factorized as (x-2)*(x+2)
So x^3-x^2-4x+4=(x-1)*(x^2-4)=(x-1)(x-2)*(x+2)
So there are 3 dofferent roots:
x1=1 x2=-2 and x3=2