Answer:
the energy of the photons is greater than the work function of the zinc oxide.
h f> = Ф
Explanation:
In this experiment on the photoelectric effect, it is explained by the Einstein relation that considers the light beam formed by discrete energy packages.
K_max = h f - Ф
in the exercise phase, they indicate that different wavelengths can inject electrons, so the energy of the photons is greater than the work function of the zinc oxide.
h f > = Ф
Answer:360 kg m/s
Explanation:Momentum refers to an object's quantity of motion.
Formula for Momentum: p=mv
p = refers to the momentum
m = refers to the object's mass (this is represented by the unit kg or kilogram)
v = this refers to the object's velocity (this is represented by the unit m/s or meter per second)
So, given that the bike has a mass of 18 kg and is traveling at 20 m/s, then you can already get the momentum by multiplying both of these values.
p = the bike's momentum (what is being asked here)
m = 18 kg
v = 20 m/s
Thus, p = 18kg × 20 m/s = 360 kg m/s
The bike's momentum is 360 kg m/s.
Brainlist please
Answer:
gravity i think hope this helps
Explanation:
Answer:
0.3 m
Explanation:
Initially, the package has both gravitational potential energy and kinetic energy. The spring has elastic energy. After the package is brought to rest, all the energy is stored in the spring.
Initial energy = final energy
mgh + ½ mv² + ½ kx₁² = ½ kx₂²
Given:
m = 50 kg
g = 9.8 m/s²
h = 8 sin 20º m
v = 2 m/s
k = 30000 N/m
x₁ = 0.05 m
(50)(9.8)(8 sin 20) + ½ (50)(2)² + ½ (30000)(0.05)² = ½ (30000)x₂²
x₂ ≈ 0.314 m
So the spring is compressed 0.314 m from it's natural length. However, we're asked to find the additional deformation from the original 50mm.
x₂ − x₁
0.314 m − 0.05 m
0.264 m
Rounding to 1 sig-fig, the spring is compressed an additional 0.3 meters.