1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lord [1]
3 years ago
14

Neutron stars are extremely dense objects that are formed from the remnants of supernova explosions. Many rotate very rapidly. S

uppose the mass of a certain spherical neutron star is twice the mass of the Sun and its radius is 13.0 km. Determine the greatest possible angular speed the neutron star can have so that the matter at its surface on the equator is just held in orbit by the gravitational force. (The mass of the Sun is 1.99 1030 kg.)
Physics
1 answer:
Vlada [557]3 years ago
5 0

Answer:

The required angular speed the neutron star is 10992.32 rad/s

Explanation:

Given the data in the question;

mass of the sun M_S = 1.99 × 10³⁰ kg

Mass of the neutron star

M_N = 2( M_S )

M_N = 2( 1.99 × 10³⁰ kg )

M_N = ( 3.98 × 10³⁰ kg )

Radius of neutron star R_N = 13.0 km = 13 × 10³ m

Now, let mass of a small object on the neutron star be m

angular speed be ω_N.

During rotational motion, the gravitational force on the object supplies the necessary centripetal force.

GmM_N = / R_N² = mR_Nω_N²

ω_N² = GM_N = / R_N³

ω_N = √(GM_N = / R_N³)

we know that gravitational G = 6.67 × 10⁻¹¹ Nm²/kg²

we substitute

ω_N = √( (  6.67 × 10⁻¹¹ )( 3.98 × 10³⁰ ) ) / (13 × 10³ )³)

ω_N = √( 2.65466 × 10²⁰ / 2.197 × 10¹²

ω_N = √ 120831133.3636777

ω_N = 10992.32 rad/s

Therefore, The required angular speed the neutron star is 10992.32 rad/s

You might be interested in
HIIIIIIIIIIIIIIIIIII WHAT IS 50X550
jekas [21]
50 x 550 is 27500!!!!
3 0
3 years ago
A sphere moves in simple harmonic motion with a frequency of 4.80 Hz and an amplitude of 3.40 cm. (a) Through what total distanc
geniusboy [140]

Answer:

a)  the total distance traveled by the sphere during one cycle of its motion = 13.60 cm

b) The maximum speed is = 102.54 cm/s

The maximum speed occurs at maximum excursion from equilibrium.

c)  The maximum magnitude of the acceleration of the sphere is = 30.93 m/s^2

The maximum acceleration occurs at maximum excursion from equilibrium.

Explanation:

Given that :

Frequency (f) = 4.80 Hz

Amplitude (A) = 3.40 cm

a)

The total distance traveled by the sphere during one cycle of simple harmonic motion is:

d = 4A   (where A is the Amplitude)

d = 4(3.40 cm)

d = 13.60 cm

Hence, the total distance traveled by the sphere during one cycle of its motion = 13.60 cm

b)

As we all know that:

x = Asin \omega t

Differentiating the above expression with respect to x ; we have :

\frac{d}{dt}(x) = \frac{d}{dt}(Asin \omega t)

v = A \omega cos \omega t

Assuming the maximum value of the speed(v) takes place when cosine function is maximum and the maximum value for cosine function is 1 ;

Then:

v_{max} = A \omega

We can then say that the maximum speed therefore occurs at the mean (excursion) position where ; x = 0  i.e at maximum excursion from equilibrium

substituting 2 \pi f for \omega in the above expression;

v_{max} = A(2 \pi f)

v_{max} = 3.40 cm (2 \pi *4.80)

v_{max} = 102.54 \ cm/s

Therefore, the maximum speed is = 102.54 cm/s

The maximum speed occurs at maximum excursion from equilibrium.

c) Again;

v = A \omega cos \omega t

By differentiation with respect to  t;

\frac{d}{dt}(v) = \frac{d}{dt}(A \omega cos \omega t)

a =- A \omega^2 sin \omega t

The maximum acceleration of the sphere is;

a_{max} =A \omega^2

where;

w = 2 \pi f

a_{max} = A(2 \pi f)^2

where A= 3.40 cm = 0.034 m

a_{max} = 0.034*(2 \pi *4.80)^2

a_{max} = 30.93 \ m/s^2

The maximum magnitude of the acceleration of the sphere is = 30.93 m/s^2

The maximum acceleration occurs at maximum excursion from equilibrium where the oscillating sphere will have maximum acceleration at the turning points when the sphere has maximum displacement of x  = \pm A

6 0
3 years ago
The distance between the ruled lines on a diffraction grating is 1900 nm. The grating is illuminated at normal incidence with a
SashulF [63]

Answer:

3.28 degree

Explanation:

We are given that

Distance between the ruled lines on a diffraction grating, d=1900nm=1900\times 10^{-9}m

Where 1nm=10^{-9} m

\lambda_2=400nm=400\times10^{-9}m

\lambda_1=700nm=700\times 10^{-9}m

We have to find  the angular width of the gap between the first order spectrum and the second order spectrum.

We know that

\theta=sin^{-1}(\frac{m\lambda}{d})

Using the formula

m=1

\theta_1=sin^{-1}(\frac{1\times700\times 10^{-9}}{1900\times 10^{-9}})

\theta=21.62^{\circ}

Now, m=2

\theta_2=sin^{-1}(\frac{2\times400\times 10^{-9}}{1900\times 10^{-9}})

\theta_2=24.90^{\circ}

\Delta \theta=\theta_2-\theta_1

\Delta \theta=24.90-21.62

\Delta \theta=3.28^{\circ}

Hence, the angular width of the gap between the first order spectrum and the second order spectrum=3.28 degree

6 0
3 years ago
What is the average velocity of a dragster that starts from rest at the starting line and finishes a race at 2600 m/s in 12 seco
xxMikexx [17]
Using the equation v(avg)=distance/time 
and the equation v=v(original)+a(t)
solve for acceleration
2600=0+a(12)
a=216.66666 m/s^2

Then, you use the equation
v^2=v(original)+2a*(change in x)
2600^2=2(216.666666)*change in x
6760000/2/216.666666 = 15600 meters which is the length of the race

Then using v(avg)=x/t
15600/12= 1300 m/s
7 0
3 years ago
Two objects, one with a mass of and the other with a force of 30.0kg experience a gravitational force of attraction of 7.50 * 10
nydimaria [60]

Answer:

Explanation:

The formula for this is

F_g=\frac{Gm_1m_2}{r^2} where F is the gravitational force, G is the gravitational constant, m1 is the mass of one object and m2 is the mass of the other object. We are looking for r, the distance between the centers of their masses.

Filling in:

7.5*10^{-8}=\frac{6.67*10^{-11}(90.0)(30.0)}{r^2} and moving things around to solve for r:

r=\sqrt{\frac{6.67*10^{-11}(90.0)(30.0)}{7.5*10^{-8}} } Doing all that and rounding to the 3 sig fig's you need gives us a distance of 1.55 m

8 0
3 years ago
Other questions:
  • What is the maximum number of double bonds that a hydrogen atom can form?
    7·1 answer
  • What is the effect on an electric current when the voltage is increased? An increase in voltage causes the flow of electric curr
    7·2 answers
  • Which of the following materials has the highest dielectric constant
    14·1 answer
  • A wheel rotates without friction about a stationary horizontal axis at the center of the wheel. A constant tangential force equa
    6·1 answer
  • When and why was the metric system invented?
    10·1 answer
  • A runner sprints around a circular track of radius 130 m at a constant speed of 7 m/s. The runner's friend is standing at a dist
    11·1 answer
  • Cross-country power lines carry voltages of about A. 60 V. B. 120 V. C. 2200 V. D. 120,000 V.
    9·1 answer
  • The motion of an object will not be changed if
    15·2 answers
  • The electrical charge of an atom as a whole is?
    12·2 answers
  • Change to Kelvin 60 degree Celicius؟
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!