Answer:
B) 2I
Explanation:
The equation that relates voltage, current and resistance is V=RI.
The equation for the resistance of a material in terms of its resistivity, length and cross-sectional area is 
In this case, the length is divided by 2 while keeping its resistivity (since it's the same material) and area, which means the resistance gets divided by 2. Then, looking at the equation I=V/R and keeping V constant, one deduces that since the resistance now is half than before then current now must be twice as before.
This is all intuitive in fact, cuting a homogeneous resistor in half and leaving the rest of the variables constant makes twice as easy for the electrons to cross the conductor, thus twice the current (one has to know that all the variables involved behave linearly, as the equations show).
Answer:
72 joules
Explanation:
The potential energy of that hammer is a function of its displacement against gravity. Considering that it fell with a velocity of 12 m/s, it was its displacement against gravity that gave it this velocity. It will continue to move until its displacement to gravity is zero.
since the body is in motion; it has converted its potential energy (mgh, m is mass, g is acceleration due to gravity, and h is the height) to kinetic energy (energy due to motion, 1/2mv^2; m = mass, v = velocity or speed)
therefore the potential energy is equal to kinetic energy
mgh = 1/2mv^2 = 1/2 *1kg* 12*12 = 72 joules.
Answer:
freezing point and melting point
Answer:
θ=180°
Explanation:
The problem says that the vector product of A and B is in the +z-direction, and that the vector A is in the -x-direction. Since vector B has no x-component, and is perpendicular to the z-axis (as A and B are both perpendicular to their vector product), vector B has to be in the y-axis.
Using the right hand rule for vector product, we can test the two possible cases:
- If vector B is in the +y-axis, the product AxB should be in the -z-axis. Since it is in the +z-axis, this is not correct.
- If vector B is in the -y-axis, the product AxB should be in the +z-axis. This is the correct option.
Now, the problem says that the angle θ is measured from the +y-direction to the +z-direction. This means that the -y-direction has an angle of 180° (half turn).