Answer:
Maximum gravitational Force: 
Explanation:
The maximum gravitational force is achieved when the center of gravity are the closer they can be. For the spheres the center of gravity is at the center of it, so the closer this two centers of gravity can be is:
bowling ball radius + billiard ball radius = 0,128 m
The general equation for the magnitude of gravitational force is:

Solving for:




The result is:

Answer:
100 %
Explanation:
The maximun efficiency possible (whem not limited by the second law of thermodynamics) happens when all the energy used is transformed into the type of energy we required with no other transformations.
For example, in an engine we want that all the energy we supply is being converted to work. That's the ideal case, but in reality always some of that energy is lost in the form of heat.
Answer:
1045
Answer: 1045 J of energy was released on cooling the down the water from 20 °C to 10 °C.
Answer:
.
Explanation:
Lithium is in the first column of the periodic table, so it will have 1 valence electron.
Bromine is in the seventh column of the periodic table, so it will have seven valence electrons.
They must combine in a way to reach 8.
When combining elements to form compounds, the "crisscross method" is used. Above Li would be a charge of +1, and above Br would be a charge of -1.
Cross the 1 from the top of Li to the bottom of Br, and so there is 1 Br.
Cross the 1 from the top of Br to the bottom of Li, and so there is 1 Li.
It is not written BrLi because chemists decided to order them the other way. Technically speaking, it isn't wrong, but the positive charge is normally put on the left and the negative charge is normally put on the right.
Molarity is measured in moles per Liter. If there are 1.35 g/mL, find out how many grams there are in a liter of solution.
If there are 1000 mL in one liter, we can multiply by 1000 to get g/L
1.35 g/mL x 1 Liter/1000 mL = 1350 g per Liter of solution
By weight, the NaOH is 33% or .33
1350 g x .33 = 445.5 g of NaOH
Molar mass of NaOH is 39.997 g
445.5 g x 1 mol NaOH/39.997 g = 11.13833538 moles per Liter
Rounded to significant figures, the answer is 11 mol/L NaOH