Answer:
Ca(OH)2 will not precipitate because Q<Ksp
Explanation:
Ksp for Ca(OH)2 has already been stated in the question as 8.0 x 10-8mol2dm-6
The value of the reaction quotient depends heavily on the concentration of the reactants. As the initial concentration of the calcium carbide decreases considerably, the reaction quotient decreases until Q<Ksp hence the Ca(OH)2 will not precipitate from solution.
The reaction equation is:
CaC₂(s) + H₂O ⇒ Ca(OH)₂ + C₂H₂
From
Ca(OH)2= Ca2+ + 2OH-
Concentration of solution= 0.064×1/64= 1×10-3
Since [Ca2+] = 1×10-3
[OH-]= (2×10-3)^2= 4×10^-6
Hence Q= 4×10^-9
This is less than the Ksp hence the answer.
Answer:
1. Dissolving powder in milk - Chemical
- It is chemical because the milk has changed on a molecular level
2. Toasting bread - Chemical
- It is chemical because adding heat to the bread cooks it, therefore
changing it on a molecular level
3. Melting cheese - Physical
- It is physical because the physical appearance was the only change
4. Slicing apples or bannanas - Physical
- It is physical because the physical appearance was the only change
5. Frying an egg - Chemical
- It is chemical because new particles were formed
6. Milk souring - Chemical
- It is chemical because it is forming a new product (lactic acid)
Explanation:
Physical Change occurs when the particles of a substance become rearranged, but do not change into different particles.
Chemical change occurs when a new substance is formed. This process is irreversable.
The answer is silicon because it’s atomic number is 14
Answer:
2726.85 °C
Explanation:
Given data:
Initial pressure = 565 torr
Initial temperature = 27°C
Final temperature = ?
Final pressure = 5650 torr
Solution:
Initial temperature = 27°C (27+273 = 300 K)
According to Gay-Lussac Law,
The pressure of given amount of a gas is directly proportional to its temperature at constant volume and number of moles.
Mathematical relationship:
P₁/T₁ = P₂/T₂
Now we will put the values in formula:
T₂ = P₂T₁ /P₁
T₂ = 5650 torr × 300 K / 565 torr
T₂ = 1695000 torr. K /565 torr
T₂
= 3000 K
Kelvin to degree Celsius:
3000 K - 273.15 = 2726.85 °C
Answer: The amount of time needed to plate 14.0 kg of copper onto the cathode is 295 hours
Explanation:
We are given:
Moles of electron = 1 mole
According to mole concept:
1 mole of an atom contains
number of particles.
We know that:
Charge on 1 electron = 
Charge on 1 mole of electrons = 

is passed to deposit = 1 mole of copper
63.5 g of copper is deposited by = 193000 C
of copper is deposited by =
To calculate the time required, we use the equation:

where,
I = current passed = 40.0 A
q = total charge = 42551181 C
t = time required = ?
Putting values in above equation, we get:

Converting this into hours, we use the conversion factor:
1 hr = 3600 seconds
So, 
Hence, the amount of time needed to plate 14.0 kg of copper onto the cathode is 295 hours