Earth's gravity pulls air as close to the surface as possible. As altitude increases, the amount of gas molecules in the air decreases—the air becomes less dense than air nearer to sea level.
Answer:
616.223684211 N
Explanation:
= Resistive force on the wheel = 115 N
F = Force acting on sprocket
= Radius of sprocket = 4.75 cm
= Radius of wheel = 25 cm
Moment of inertia is given by

Torque

Torque is given by

The force on the chain is 616.223684211 N
Answer: The following statement is true about squall line thunderstorm development: <em><u>These often form ahead of the advancing front but rarely behind it because lifting of warm, humid air and the generation of a squall line usually occur in the warm sector ahead of an advancing cold front. Behind a cold front, the air motions are usually downward, and the air is cooler and drier.</u></em>
<em>An upper-level wave, accountable for the fabrication of a squall line, extend in front of and backside a cold front, the air backside the front is cold, steady and settling while the air ahead of the front is hot and co-seismic.</em>
Answer: I think the answer is a wave/ a transverse wave, or electromagnetic waves as well.
Answer:
11.962337 × 10^-4 N
Explanation:
Given the following :
Length L = 11.8
Charge = 29nC = 29 × 10^-9 C
Linear charge density λ = 1.4 × 10^-7 C/m
Radius (r) = 2cm = 2/100 = 0.02 m
Using the relation:
E = 2kλ/r ; F =qE
F = 2kλq/L × ∫dr/r
F = 2*k*q*λ/L × (In(0.02 + L) - In(0.02))
2*k*q*λ/L = [2 × (9 * 10^9) * (29 * 10^9) * (1.4 * 10^-7)]/ 0.118] = 6193.2203 × 10^(9 - 9 - 7) = 6193.2203 × 10^-7 = 6.1932203 × 10^-4
In(0.02 + 0.118) - In(0.02) = In(0.138) - In(0.02) = 1.9315214
Hence,
(6.1932203 × 10^-4) × 1.9315214 = 11.962337 × 10^-4 N