Before comparing and contrasting these layers of Earth, we first define what lithosphere and asthenosphere are.
Lithosphere primarily consists of the outermost layers of the Earth, which are the crust and the uppermost portion of the mantle. Simply, the ground you stepped on is part of earth's lithosphere. On the other hand, asthenosphere comprises of hot and partially molten rock just located at the upper portion of the mantle but just below the lithosphere. Both have similarities and differences, which are as follows:
SIMILARITIES:
- Both are the passageways of earthquakes P-waves (Primary waves) just before it reaches the earth's surface.
- Both are made of the same material (Silicon oxide rocks, which are rich in iron and magnesium)
DIFFERENCES:
- Rocks in lithosphere can bend (it deforms, resulting in fault formations), however, rocks in the asthenosphere, not only bend but also flow (plastic in nature).
- Lithosphere has relatively low temperatures compared to asthenosphere.
- Due to its depth, pressure against rocks in asthenosphere is comparatively higher compared to lithosphere.
According to the plot, the positions at time <em>t</em> = 0 s and <em>t</em> = 19 s are -1 m and -2 m, respectively. So the average velocity for the 19-s interval is

Answer:
The second law of thermodynamics describes the direction in which heat is transferred between systems, <u>heat is a form of energy</u> in transition.
This law says that heat or energy always flows spontaneously from the body or system with a higher temperature to a lower temperature system (from something hot to something cold, and not the other way around).
This is why if we leave an ice at room temperature it will eventually melt, because <u>the environment transferred energy to the ice</u> and caused its temperature to increase and thus to turn into a liquid form.
The second law can also be interpreted in terms of entropy, and tells us that entropy, which is often interpreted as a measure of disorder, always increases.
The hotter an object is, the more infrared radiation it emits. Infrared radiation is a type of electromagnetic radiation, which involves waves rather than particles. This means that, unlike conduction and convection, radiation can even pass through the vacuum of space.
Answer: Experimental design means creating a set of procedures to test a hypothesis. A good experimental design requires a strong understanding of the system you are studying. By first considering the variables and how they are related ( Step 1 ), you can make predictions that are specific and testable
Explanation:
A hypothesis (plural hypotheses) is a proposed explanation for a phenomenon. For a hypothesis to be a scientific hypothesis, the scientific method requires that one can test it. Scientists generally base scientific hypotheses on previous observations that cannot satisfactorily be explained with the available scientific theories. Even though the words "hypothesis" and "theory" are often used interchangeably, a scientific hypothesis is not the same as a scientific theory. A working hypothesis is a provisionally accepted hypothesis proposed for further research, in a process beginning with an educated guess or thought.