Step 1-Light Dependent
CO2 and H2O enter the leaf
Step 2- Light Dependent
Light hits the pigment in the membrane of a thylakoid, splitting the H2O into O2
Step 3- Light Dependent
The electrons move down to enzymes
Step 4-Light Dependent
Sunlight hits the second pigment molecule allowing the enzymes to convert ADP to ATP and NADP+ gets converted to NADPH
Step 5-Light independent
The ATP and NADPH is used by the calvin cycle as a power source for converting carbon dioxide from the atmosphere into simple sugar glucose.
Step 6-Light independent
The calvin cycle converts 3CO2 molecules from the atmosphere to glucose
calvin cycle
The second of two major stages in photosynthesis (following the light reactions), involving atmospheric CO2 fixation and reduction of the fixed carbon into carbohydrate.
Answer: It turns blue litmus red
Explanation:
I just got it right on edge
The balanced chemical reaction is:<span>
</span><span>2C6H6 + 15O2 → 12CO2 + 6H2O</span><span>
We
are given the amount of carbon dioxide to be produced for the reaction. This will
be the starting point of our calculations.
</span>42 g CO2 ( 1 mol CO2 / 44.01 g CO2) ( 2 mol C6H6 / 12 mol CO2 ) (78.1074 g C6H6 / 1 mol C6H6) = 12.42 grams of C6H6
Answer is: <span>A. Fracking reduces U.S. dependency on oil and gas from other countries..
Other answers are not bad side of fracking.
</span>Fracking is technique in which rock is fractured by a pressurized liquid and is used in <span>to create cracks in the rock formations through which </span>natural gas<span>, </span>petroleum<span> will flow more freely.</span>
Answer:
At -13
, the gas would occupy 1.30L at 210.0 kPa.
Explanation:
Let's assume the gas behaves ideally.
As amount of gas remains constant in both state therefore in accordance with combined gas law for an ideal gas-

where
and
are initial and final pressure respectively.
and
are initial and final volume respectively.
and
are initial and final temperature in kelvin scale respectively.
Here
,
,
,
and
Hence 



So at -13
, the gas would occupy 1.30L at 210.0 kPa.