Answer:
89.34%
Explanation:
First, write a balanced reaction.
Mg3N2 + <u>6</u>H2O --> <u>3</u>Mg (OH)2 + <u>2</u>NH3
Next determine the moles of the known substance, or limiting reagent ( H2O)
n= m/MM
n ( H2O) = 4.33/(1.008×2)+16
n(H2O)= 0.2403
Use the mole ratio to find the moles of Mg(OH)2
0.2403 ÷2
n (Mg (OH)2) = 0.1202
Next, find the theoretical mass of Mg (OH)2 that should have been produced
m= n × MM
m= 0.1202 × (24.305 + (16×2) +(1.008 ×2))
=7.007g
To find percentage yield, divide the experimental amount by the theoretical amount and multiply by 100.
6.26/ 7.007 × 100
=89.34%
The complete table is inserted.
A table is given,
Formulas used:
pH= -log(H⁺)
pOH= -log(OH⁻)
pH+ pOH=14
Calculations:
For A: (H⁺)=2×10⁻⁸M
Using the pH formula:
pH= -log(H⁺)=-log(2×10⁻⁸)=7.69
pOH=14 - 7.69=6.3
Calculating OH concentration,
pOH= -log(OH⁻)
6.3= -log(OH⁻)
(OH⁻)=5.011×10⁻⁷M
Hence, the nature of A is basic.
Similarily,
For B,
(OH⁻)=1×10⁻⁷
Using the pH formula:
pOH= -log(OH⁻)= -log(1×10⁻⁷)=7
pH=14-7=7
Calculating H concentration,
pH= -log(H⁺)
7= -log(H⁺)
(H⁺)=1×10⁻⁷M
Hence, the nature of B is neutral.
Similarily,
For C,
pH=12.3
Using the pH formula:
pOH=14-12.3=1.7
Calculating H concentration,
pH= -log(H⁺)
12.3= -log(H⁺)
(H⁺)=5.011×10⁻¹³M
Calculating OH concentration,
pOH= -log(OH⁻)
1.7= -log(OH⁻)
(OH⁻)=1.99×10⁻²M
Hence, the nature of C is Basic.
Similarily,
For D,
pOH=6.8
Using the pH formula:
pH=14-6.8=7.2
Calculating H concentration,
pH= -log(H⁺)
7.2= -log(H⁺)
(H⁺)=6.309×10⁻⁸M
Calculating OH concentration,
pOH= -log(OH⁻)
6.8= -log(OH⁻)
(OH⁻)=1.58×10⁻⁷M
Hence, the nature of D is basic.
Learn more about the acid and bases here:
brainly.com/question/16189013
#SPJ10
answer:Arrhenius theory: According to this theory, acid produces hydrogen or hydronium ions in a solution, while the base produces hydroxide ions in a solution
Answer: The iron equilibrium is the more positive, and so will go in the forward direction. The tin equilibrium is less positive (more negative), and will be driven backwards. So the tin(II) ions will reduce iron(III) ions to iron(II) ions. In the process, of course, the tin(II) ions will be oxidised to tin(IV) ions.
Explanation:
Answer:
Option 10. 1
Explanation:
The unbalanced equation is:
Fe₂P(s) + S(s) → P₄S₁₀(s) + FeS(s)
In order to balance P, we can add 4 to the Fe₂P.
The addition made that we get 8 Fe now, in the reactant side, so we add 8 to FeS in product side.
We count the sulfur, 10 from the P₄S₁₀ + 8 from the FeS = 18
We add 18 to the S in the reactant side. Balanced equation is:
4Fe₂P(s) + 18 S(s) → P₄S₁₀(s) + 8 FeS(s)