Heat transfer is the phenomenon that occurs when the two objects are in the vicinity of each other and by increasing the area of their contact. Thus, option B is correct.
<h3>What is heat transfer?</h3>
Heat transfer is a process that flows the heat from one system to another, and is because of the difference in the temperature of the two objects that are part of the system.
The methods like conduction, convection, and radiation transfer the heat from the surface area to the other object. The heat gets transferred from the area of high to the low temperature.
Therefore, option B. by increasing the surface area the heat transfer increases.
Learn more about heat transfer here:
brainly.com/question/17823456
#SPJ1
Answer:
12.33 cal/sec
Explanation:
As we know,
1 Kcal = 1000 cal
So,
0.74 Kcal = X cal
Solving for X,
X = (0.74 Kcal × 1000 cal) ÷ 1 Kcal
X = 740 cal
Also we know that,
1 Minute = 60 Seconds
Therefore, in order to derive cal/sec unit replace 0.74 Kcal by 740 cal and 1 min by 60 sec in given unit as,
= 740 cal / 60 sec
= 12.33 cal/sec
For the answer to the question above, <span>ater weights 1000kg per meter cubed. the volume of the pool is part A is 5*4*3 = 60 meters cubed </span>
<span>60*1000 = 60 000kg. the force from this is m*g = 60 000 * 9.81 = 588kN </span>
<span>part B: </span>
<span>volume: 4*4*3 = 48 meters cubed </span>
<span>48 * 1000 = 48000kg </span>
<span>F = 9.81*48000 = 470kN
I hope this helps.</span>
Answer:
Keq = [CO₂]/[O₂]
Explanation:
Step 1: Write the balanced equation for the reaction at equilibrium
C(s) + O₂(g) ⇄ CO₂(g)
Step 2: Write the expression for the equilibrium constant (Keq)
The equilibrium constant is equal to the product of the concentrations of the products raised to their stoichiometric coefficients divided by the product of the concentrations of the reactants raised to their stoichiometric coefficients. It only includes gases and aqueous species. The equilibrium constant for the given system is:
Keq = [CO₂]/[O₂]