1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Thepotemich [5.8K]
3 years ago
6

Mr. Vu can drive his new electric car 194 miles before he needs to charge his battery. How far can Mr. Vu’s car go on 15 battery

charges?
A 970 miles
B 1,164 miles
C 1,940 miles
D 2,910 miles
Mathematics
1 answer:
const2013 [10]3 years ago
6 0

Answer:

Mr. Vu can go 2910 miles on 15 battery charges (D).

Step-by-step explanation:

If 1 battery charge lasts 194, then we can multiply 15 by 194 to find this amount of miles.

15 times 194 equals 2910, so with 15 battery charges, he would go 2910 miles.

#teamtrees #WAP (Water And Plant) #ELM (Every Life Matters)

You might be interested in
What is the value of x
djyliett [7]

Hey there!


Assuming #1 ….


x + 7x + x = 180°
REWORD

1x + 7x + 1x = 180°

COMBINE the LIKE TERMS

(1x + 7x + 1x) = 180°

8x + 1x = 180°

9x = 180°

DIVIDE 9 to BOTH SIDES

9x/9 = 180/9

CANCEL out: 9/9 because it equal 1

KEEP: 180/9 because it give you the x-value

NEW EQUATION: x = 180/9

SIMPLIFY IT!
x = 20
||||~~||||~~||||~~||||~~~||||~~||||~~||||~~||||~~~||||

Good luck on your assignment & enjoy your day!


~Amphitrite1040:)

3 0
2 years ago
Read 2 more answers
The shaded area on the grid represents the part of a rectangular wall that was painted. Each small square on the wall has the sa
MrMuchimi

Answer:

ok i already did ur paragraph is that it

8 0
3 years ago
The third-degree Taylor polynomial about x = 0 of In(1 - x) is
gizmo_the_mogwai [7]

Answer:

\displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative Rule [Quotient Rule]:                                                                                \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

MacLaurin/Taylor Polynomials

  • Approximating Transcendental and Elementary functions
  • MacLaurin Polynomial:                                                                                     \displaystyle P_n(x) = \frac{f(0)}{0!} + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + ... + \frac{f^{(n)}(0)}{n!}x^n
  • Taylor Polynomial:                                                                                            \displaystyle P_n(x) = \frac{f(c)}{0!} + \frac{f'(c)}{1!}(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \frac{f'''(c)}{3!}(x - c)^3 + ... + \frac{f^{(n)}(c)}{n!}(x - c)^n

Step-by-step explanation:

*Note: I will not be showing the work for derivatives as it is relatively straightforward. If you request for me to show that portion, please leave a comment so I can add it. I will also not show work for elementary calculations.

<u />

<u>Step 1: Define</u>

<em>Identify</em>

f(x) = ln(1 - x)

Center: x = 0

<em>n</em> = 3

<u>Step 2: Differentiate</u>

  1. [Function] 1st Derivative:                                                                                  \displaystyle f'(x) = \frac{1}{x - 1}
  2. [Function] 2nd Derivative:                                                                                \displaystyle f''(x) = \frac{-1}{(x - 1)^2}
  3. [Function] 3rd Derivative:                                                                                 \displaystyle f'''(x) = \frac{2}{(x - 1)^3}

<u>Step 3: Evaluate Functions</u>

  1. Substitute in center <em>x</em> [Function]:                                                                     \displaystyle f(0) = ln(1 - 0)
  2. Simplify:                                                                                                             \displaystyle f(0) = 0
  3. Substitute in center <em>x</em> [1st Derivative]:                                                             \displaystyle f'(0) = \frac{1}{0 - 1}
  4. Simplify:                                                                                                             \displaystyle f'(0) = -1
  5. Substitute in center <em>x</em> [2nd Derivative]:                                                           \displaystyle f''(0) = \frac{-1}{(0 - 1)^2}
  6. Simplify:                                                                                                             \displaystyle f''(0) = -1
  7. Substitute in center <em>x</em> [3rd Derivative]:                                                            \displaystyle f'''(0) = \frac{2}{(0 - 1)^3}
  8. Simplify:                                                                                                             \displaystyle f'''(0) = -2

<u>Step 4: Write Taylor Polynomial</u>

  1. Substitute in derivative function values [MacLaurin Polynomial]:                 \displaystyle P_3(x) = \frac{0}{0!} + \frac{-1}{1!}x + \frac{-1}{2!}x^2 + \frac{-2}{3!}x^3
  2. Simplify:                                                                                                             \displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

Topic: AP Calculus BC (Calculus I/II)

Unit: Taylor Polynomials and Approximations

Book: College Calculus 10e

5 0
3 years ago
Help please asap!!!!!!!!!!!
elena55 [62]

1.65 i think but i might be wrong

3 0
3 years ago
Simplify -20b^8 + 2b^8
masya89 [10]

Answer:

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Other questions:
  • 1. 1.4(x−1.6)=1.6(x−1.4)<br><br>solve<br>2. 1.4(x−1.6)=1.6(1.4−x)<br><br>solve
    8·1 answer
  • AJ graphs the function f(x)=-(x+2)^(2)-1
    15·1 answer
  • The peak of Mount Everest is at 8,848 meters above sea level. The peak of Kanchenjunga is at 8,586 meters above sea level. The e
    8·1 answer
  • Use the given conditions to write an equations for the line in slope- intercept form. passing through (1,-8) and (-7,8)
    7·1 answer
  • Solve the system of equations please<br> 1/4x+y=1<br> 3/2x-y=4/3
    15·1 answer
  • -What is the truth value under the wedge of the first premise?
    8·1 answer
  • Howard solved 6 math problems in 16 minutes.
    14·1 answer
  • How would you describe the pattern?
    6·1 answer
  • V256 = (1 point)<br> O 12<br> O 14<br> O 16<br> O 18
    9·1 answer
  • Solve for x.<br> 4x - 36<br> 3x + 10
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!