Ice floats after it crystallizes because ITS DENSITY IS LESS THAN THAT OF WATER.
When a quantity of water is cools down by reducing its temperature, the molecules of the water lose kinetic energy and slow down in their movement. As the water is cooling down, it is volume is expanding. When the temperature reaches zero degree Celsius, the water becomes ice. At this point, the ice can float on water because its density is less than that of water; this is as a result of the spaces that now exist in the ice structure.
Answer:
262.5 Joules
Explanation:
You find the kinetic energy of multiplying half of the mass by the velocity. In this word problem it tells you the mass so you divide it by 2. That answer is 2.625, you then multiply that by the velocity, in this instance it's 1.0 x 10^2 mi/h.
The unit in kinetic energy is Joules. This is actually a really important part in chemistry and physics.
At 3.5s the distance would be 10.85
Find 1/4th of 2.00 and add that to 6.2
I think it is C, because a covalent bond is a distribution of 2 atoms to 1 electron, meaning they are sharing and not exchanging, and the electronegravity would be above 1.7
Answer:
K = [ HOCl ] . [HgO. HgCl2] / [Cl2]^2 [H2O] [HgO]^2
Explanation:
The law of Mass Action states that, at constant temperature, the rate of reaction is proportional to the active masses of each of the reactants.
The reaction above is a reversible reaction and the law of mass action also applies to it.
The rate of reaction from left-to-right reaction = r1 = k. [Cl2]^2 [H2O] [HgO]^2
Rate of reaction from right - to - left r2 = k. [hocl]^2 [HgO . hgcl2]
Then at equilibrium,
r1 = r2
k1/k2 = [HOCl ]^2 [HgO. HgCl2] / [Cl2]^2 [H2O] [HgO]^2 = K
where K is the equilibrium constant for the reaction.