Explanation:
The given data is as follows.
           = 100 mm Hg or
 = 100 mm Hg or  = 0.13157 atm
 = 0.13157 atm
           =
 =  = (1080 + 273) K = 1357 K
 = (1080 + 273) K = 1357 K
           =
 =  = (1220 + 273) K = 1493 K
 = (1220 + 273) K = 1493 K
           = 600 mm Hg or
 = 600 mm Hg or  = 0.7895 atm
 = 0.7895 atm
           R = 8.314 J/K mol
According to Clasius-Clapeyron equation, 
                    
             ![log(\frac{0.7895}{0.13157}) = \frac{\Delta H_{vap}}{2.303 \times 8.314 J/mol K}[\frac{1}{1357 K} - \frac{1}{1493 K}]](https://tex.z-dn.net/?f=log%28%5Cfrac%7B0.7895%7D%7B0.13157%7D%29%20%3D%20%5Cfrac%7B%5CDelta%20H_%7Bvap%7D%7D%7B2.303%20%5Ctimes%208.314%20J%2Fmol%20K%7D%5B%5Cfrac%7B1%7D%7B1357%20K%7D%20-%20%5Cfrac%7B1%7D%7B1493%20K%7D%5D)
           ![log (6) = \frac{\Delta H_{vap}}{19.147}[\frac{(1493 - 1357) K}{1493 K \times 1357 K}]](https://tex.z-dn.net/?f=log%20%286%29%20%3D%20%5Cfrac%7B%5CDelta%20H_%7Bvap%7D%7D%7B19.147%7D%5B%5Cfrac%7B%281493%20-%201357%29%20K%7D%7B1493%20K%20%5Ctimes%201357%20K%7D%5D)
                 0.77815 = 
                =
 =  J/mol
 J/mol
                                    = 
                                     = 221.9 kJ/mol
Thus, we can conclude that molar heat of vaporization of substance X is 221.9 kJ/mol.
 
 
        
             
        
        
        
These are two questions and two answers
Question 1.
Answer:
Explanation:
<u>1) Data:</u>
a) m = 9.11 × 10⁻³¹ kg
b) λ =  3.31 × 10⁻¹⁰ m
c) c = 3.00 10⁸ m/s
d) s = ?
<u>2) Formula:</u>
The wavelength (λ), the speed (s), and the mass (m) of the particles are reltated by the Einstein-Planck's equation:
- h is Planck's constant: h= 6.626×10⁻³⁴J.s
<u>3) Solution:</u>
Solve for s: 
Substitute: 
- s = 6.626×10⁻³⁴J.s / ( 9.11 × 10⁻³¹ kg ×  3.31 × 10⁻¹⁰ m) = 2.20 × 10 ⁶ m/s
To express the speed relative to the speed of light, divide by c =  3.00 10⁸ m/s
- s =  2.20 × 10 ⁶ m/s / 3.00 10⁸ m/s = 7.33 × 10 ⁻³
Answer: s = 7.33 × 10 ⁻³ c
 Question 2.
Answer:
Explanation:
<u>1) Data:</u>
a) m = 45.9 g (0.0459 kg)
b) s = 70.0 m/s
b) λ =  ?
<u>2) Formula:</u>
Macroscopic matter follows the same  Einstein-Planck's equation, but the wavelength is so small that cannot be detected:
- h is Planck's constant: h= 6.626×10⁻³⁴J.s
<u>3) Solution:</u>
Substitute:
- λ =  6.626×10⁻³⁴J.s / ( 0.0459 kg ×  70.0 m/s) = 2.06 × 10 ⁻³⁴ m
As you see, that is tiny number and explains why the wave nature of the golf ball is undetectable.
Answer: 2.06 × 10 ⁻³⁴ m.   
 
        
             
        
        
        
Answer:
4.5 g/L.
Explanation:
- To solve this problem, we must mention Henry's law.
- Henry's law states that at a constant temperature, the amount of a given gas dissolved in a given type and volume of liquid is directly proportional to the partial pressure of that gas in equilibrium with that liquid.
- It can be expressed as: P = KS,
P is the partial pressure of the gas above the solution.
K is the Henry's law constant,
S is the solubility of the gas.
- At two different pressures, we have two different solubilities of the gas.
<em>∴ P₁S₂ = P₂S₁.</em>
P₁ = 525.0 kPa & S₁ = 10.5 g/L.
P₂ = 225.0 kPa & S₂ = ??? g/L.
∴ S₂ = P₂S₁/P₁ = (225.0 kPa)(10.5 g/L) / (525.0 kPa) = 4.5 g/L.