We can write the balanced equation for the synthesis reaction as
H2(g) + Cl2(g) → 2HCl(g)
We use the molar masses of hydrogen chloride gas HCl and hydrogen gas H2 to calculate for the mass of hydrogen gas H2 needed:
mass of H2 = 146.4 g HCl *(1 mol HCl / 36.46 g HCl) * (1 mol H2 / 2 mol HCl) *
(2.02 g H2 / 1 mol H2)
= 4.056 g H2
We also use the molar masses of hydrogen chloride gas HCl and chlorine gas CL2 to calculate for the mass of hydrogen gas H2:
mass of CL2 = 146.4 g HCl *(1 mol HCl / 36.46 g HCl) * (1 mol Cl2 / 2 mol HCl) *
(70.91 g Cl2 / 1 mol Cl2)
= 142.4 g Cl2
Therefore, we need 4.056 grams of hydrogen gas and 142.4 grams of chlorine gas to produce 146.4 grams of hydrogen chloride gas.
Answer : The pressure of hydrogen gas is, 739.3 torr
Explanation :
As we are given:
Vapor pressure of water = 18.7 torr
Barometric pressure = 758 torr
Now we have to calculate the pressure of hydrogen gas.
Pressure of hydrogen gas = Barometric pressure - Vapor pressure of water
Pressure of hydrogen gas = 758 torr - 18.7 torr
Pressure of hydrogen gas = 739.3 torr
Therefore, the pressure of hydrogen gas is, 739.3 torr
Explanation:
(a) potassium oxide with water

According to reaction,1 mole of potassium oxide reacts with 1 mole of water to give 1 mole of potassium hydroxide.
(b) diphosphorus trioxide with water

According to reaction,1 mole of diphosphorus trioxide reacts with 2 moles of water to give 2 moles of phosphorus acid.
(c) chromium(III) oxide with dilute hydrochloric acid,

According to reaction,1 mole of chromium(III) oxide reacts with 6 moles of hydrochloric acid to give 2 moles of chromium(III) chloride and 3 moles of water.
(d) selenium dioxide with aqueous potassium hydroxide

According to reaction,1 mole of selenium dioxide reacts with 2 moles of potassium hydroxide to give 1 mole of potassium selenite and 1 mole of water.
1. Solids
- definite volume & shape
- little energy
-vibrate in place
- very incompressible
2. Liquids
- held together yet can still flow
Explanation:
kinetic energy?? idek hope I helped in anyway possible