Interpreting the graph and the situation, it is found that the values of d that can be included in the solution set are 1 and 4.
----------------------
- According to Benford's law, the probability of a number starting with digit is d is:

- A number can start with 10 possible digits, ranging from 1 to 9, which are all integer digits.
- Thus, d can only assume integer digits.
- In the graph, the solution is d < 5.
- The integer options for values of d are 1 and 4.
- For the other options that are less than 5, they are not integers, so d cannot assume those values.
A similar problem is given at brainly.com/question/16764162
Only 25 and 28 are functions.
A function must have only one y value per x value. For 26, the y value of 0 and multiple others have two different y values. For 27, all x values less than 0 have multiple y values.
Answer:

Step-by-step explanation:
Given
When mass = 4kg; Acceleration = 15m/s²
Required
Determine the acceleration when mass = 10kg, provided force is constant;
Represent mass with m and acceleration with a
The question says there's an inverse variation between acceleration and mass; This is represented as thus;

Convert variation to equality
; Where F is the constant of variation (Force)
Make F the subject of formula;

When mass = 4kg; Acceleration = 15m/s²


When mass = 10kg; Substitute 60 for Force



Divide both sides by 10


<em>Hence, the acceleration is </em>
<em />