1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
anastassius [24]
3 years ago
6

A 5-mm-thick stainless steel strip (k = 21 W/m•K, rho = 8000 kg/m3, and cp = 570 J/kg•K) is being heat treated as it moves throu

gh a furnace at a speed of 1 cm/s. The air temperature in the furnace is maintained at 930°C with a convection heat transfer coefficient of 80 W/m2•K. If the furnace length is 3 m and the stainless steel strip enters it at 20°C, determine the temperature of the strip as it exits the furnace.
Engineering
1 answer:
Drupady [299]3 years ago
5 0

Answer:

The temperature of the strip as it exits the furnace is 819.15 °C

Explanation:

The characteristic length of the strip is given by;

L_c = \frac{V}{A} = \frac{LA}{2A} = \frac{5*10^{-3}}{2} = 0.0025 \ m

The Biot number is given as;

B_i = \frac{h L_c}{k}\\\\B_i = \frac{80*0.0025}{21} \\\\B_i = 0.00952

B_i < 0.1,  thus apply lumped system approximation to determine the constant time for the process;

\tau = \frac{\rho C_p V}{hA_s} = \frac{\rho C_p L_c}{h}\\\\\tau = \frac{8000* 570* 0.0025}{80}\\\\\tau = 142.5 s

The time for the heating process is given as;

t = \frac{d}{V} \\\\t = \frac{3 \ m}{0.01 \ m/s} = 300 s

Apply the lumped system approximation relation to determine the temperature of the strip as it exits the furnace;

T(t) = T_{ \infty} + (T_i -T_{\infty})e^{-t/ \tau}\\\\T(t) = 930 + (20 -930)e^{-300/ 142.5}\\\\T(t) = 930 + (-110.85)\\\\T_{(t)} = 819.15 \ ^0 C

Therefore, the temperature of the strip as it exits the furnace is 819.15 °C

You might be interested in
Based on experimental observations, the acceleration of a particle is defined by the relationa = -( 0.1 + sin(x/b) ),where a and
yKpoI14uk [10]

Answer:

a) v = +/- 0.323 m/s

b) x = -0.080134 m

c) v = +/- 1.004 m/s

Explanation:

Given:

                             a = - (0.1 + sin(x/b))

b = 0.8

v = 1 m/s @ x = 0

Find:

(a) the velocity of the particle when x = -1 m

(b) the position where the velocity is maximum

(c) the maximum velocity.

Solution:

- We will compute the velocity by integrating a by dt.

                           a = v*dv / dx =  - (0.1 + sin(x/0.8))

- Separate variables:

                           v*dv = - (0.1 + sin(x/0.8)) . dx

-Integrate from v = 1 m/s @ x = 0:

                          0.5(v^2) = - (0.1x - 0.8cos(x/0.8)) - 0.8 + 0.5

                          0.5v^2 =  0.8cos(x/0.8) - 0.1x - 0.3

- Evaluate @ x = -1

                          0.5v^2 = 0.8 cos(-1/0.8) + 0.1 -0.3

                          v = sqrt (0.104516)

                          v = +/- 0.323 m/s

- v = v_max when a = 0:

                           -0.1 = sin(x/0.8)

                             x = -0.8*0.1002

                             x = -0.080134 m

- Hence,

                            v^2 = 1.6 cos(-0.080134/0.8) -0.6 -0.2*-0.080134

                            v = sqrt (0.504)

                            v = +/- 1.004 m/s

4 0
3 years ago
Implement this C program by defining a structure for each payment. The structure should have at least three members for the inte
Klio2033 [76]

Answer:

#include<stdio.h>

#include<math.h>

void output_amortized(float loan_amount,float intrest_rate,int term_years)

{

  int i,j;                       //Month

  int payments;                   //Number of payments  

  float loanAmount;               //Loan amount

  float anIntRate;               //Yealy interest Rate

  float monIntRate;               //Monthly interest rate

  float monthPayment;           //Monthly payment

  float balance;                   //Balance due

  float monthPrinciple;           //Monthly principle paid

  float monthPaidInt;           //Month interest paid

 

  balance=loan_amount;

  //Calculations

  //Monthly interest rate

  monIntRate = ((intrest_rate/(100*12)));

  //Monthly payment

  payments=term_years;  

  monthPayment = (loan_amount * monIntRate * (pow(1+monIntRate, payments)/(pow (1+monIntRate, payments)-1)));

  monthPaidInt = balance * monIntRate;

  //Amount paid to principle

  monthPrinciple = monthPayment-monthPaidInt;

  //New balance due

  balance = balance - monthPrinciple;

 

  printf("\n\nMonthly payment should be :%.2f\n\n",monthPayment);

  printf("============================AMORTIZATION SCHEDUAL==========================\n");

  printf("#\tPayment\t\tIntrest\t\tPrinciple\t\tBalance\n");

 

  for(i=0;i<payments;i++)

  {

      printf("%d%9c%.2f%9c%.2f%16c%.2f%14c%.2f\n",(i+1),'$',monthPayment,'$',monthPaidInt,'$',monthPrinciple,'$',balance);

      monthPaidInt = balance * monIntRate;

      //Amount paid to principle

      monthPrinciple = monthPayment-monthPaidInt;

      //New balance due

      balance = balance - monthPrinciple;

  }

}

int main()

{

  float principle,rate;

  int termYear;

  printf("Enter the loan amount: $");

  scanf("%f",&principle);

  printf("Enter the intrest rate :%");

  scanf("%f",&rate);

  printf("Enter the loan duration in years: ");

  scanf("%d",&termYear);

  output_amortized(principle,rate,termYear);

}

Explanation:

see output

6 0
3 years ago
(a) what is Linear equation (b) Why Laplace's equation is linear
Triss [41]

Answer:

 A) Linear Equation -

      Linear equation has only one independent variable and when the linear equation plotted on a graph it forms a straight line. It is made up of two expressions equal to each other in a equation. Linear equation graph fits the Y= mx+a ( m=slope).

B) Laplace's equation is linear as it is a second order partial differential equation. So if we put dependent variable in differential equation it always show result in linear.

7 0
3 years ago
Describe experimental factors that could be modified, and unalterable properties of materials used.
Sphinxa [80]

Answer:

a. mechanical properties

b. thermal properties

c. chemical properties

d. electical properties

e. magnetic properties

Explanation:

a. The mechanical properties of a material are those properties that involve a reaction to an applied load.The most common properties considered are strength, ductility, hardness, impact resistance, and fracture toughness, elasticity, malleability, youngs' modulus etc.

b. Thermal properties such as boiling point , coefficient of thermal expansion , critical temperature  , flammability  , heat of vaporization , melting point ,thermal conductivity , thermal expansion ,triple point , specific heat capacity

c. Chemical properties such as corrosion resistance , hygroscopy , pH , reactivity , specific internal surface area , surface energy , surface tension

d. electrical properties such as capacitance , dielectric constant , dielectric strength , electrical resistivity and conductivity , electric susceptibility , nernst coefficient (thermoelectric effect) , permittivity  etc.

e. magnetic properties such as diamagnetism,  hysteresis,  magnetostriction , magnetocaloric coefficient , magnetoresistance , permeability , piezomagnetism , pyromagnetic coefficient

3 0
3 years ago
At work, Julie is often told, "Get out of the way, this is man’s work, little woman." Her coworkers will often belittle her when
vazorg [7]

Answer:

Hostile

Explanation:

Hostile sexism is the negative attitudes that people develop towards individuals who violate traditional gender stereotypes. For example, teasing a boy who plays with dolls is an expression of hostile sexism. In most cases, it's regarded as antipathy toward women who violate traditional gender norms. In the case of Julie, other men workers perceive that Julie has violated traditional gender norms by doing men's work. Therefore, this is a clear example of hostile sexism.

3 0
3 years ago
Other questions:
  • Question 7.1: Two possible overhead valve combustion chambers are being considered – the first has two valves; the second has fo
    12·1 answer
  • Explain the two advantages and the two disadvantages of fission as an energy source.
    12·1 answer
  • A freshwater jet boat takes in water through side vents and ejects it through a nozzle of diameter D = 75 mm; the jet speed is V
    5·1 answer
  • A cylinder fitted with a frictionless piston contains 2 kg of R-134a at 3.5 bar and 100 C. The cylinder is now cooled so that th
    7·1 answer
  • The viscosity of the water was 2.3×10^−5lb⋅⋅s/ft^2 and the water density was 1.94 slugs/ft^3. Estimate the drag on an 88-ft diam
    13·1 answer
  • List two common units of measurement to describe height
    5·2 answers
  • A spherical tank for storing gas under pressure is 25 m in diameter and is made of steel 15 mm thick. The yield point of the mat
    5·2 answers
  • Cual es la definición de la distribución de las instalaciones?
    13·2 answers
  • 10.16.1: LAB: Interstate highway numbers (Python)
    9·1 answer
  • when a unit load is secured to a pallet, it is more difficult for pilferage to take place. true false
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!