Answer:
K= 95.4 J
Explanation:
For this exercise we must use the conservation of mechanical energy.
We set a reference system on the floor.
Starting point. Higher
Em₀ = U = m g h
Final point. Just before taking the floor
Em_f = K = ½ m v²
energy is conserved because there is no friction
Em₀ = Em_f
mg h = K
The height is
- h = y -y₀
h = 0- y₀
let's calculate
K = 3.23 (-9.81) (-3.01)
K= 95.4 J
Answer:
1.047 rad
Explanation:
A secondhand makes a complete revolution (360 degrees) in 60 seconds, so it displaces 6 degrees for every second of elapsed time (360/60 = 6).
And in 10 seconds, it will make a displacement of 10 degrees (6 * 10 = 60).
Finally converting the result into Radians by multiplication with π/180.
Answer:
Option (d)
Explanation:
The electrons in a conductor moves with the drift velocity when the electric current is flowing through the conductor.
The drift velocity is due to the applied electric field across the conductor.
C) electrical energy is transformed into heat energy
Answer:
2.52 m/s
Explanation:
When the man takes a step, his foot is stationary while his body revolves around it. At the point when his body is directly above his foot, there will be no normal force at his maximum speed.
Sum of the forces in the radial direction:
∑F = ma
mg = m v² / r
g = v² / r
v = √(gr)
Given that r = 0.650 m:
v = √(9.8 m/s² × 0.650 m)
v = 2.52 m/s