Answer:
Your answer should be 2. Short
Explanation:
To answer the following questions for this specific problem:
a. 11.48 secs
b. Vp = a*t*3.6 =
3*11.48*3.6 = 124.0 km/h
<span>c. 9.1 secs. </span>
I am hoping that this answer has satisfied your query about
and it will be able to help you.
Using the precise speed of light in a vacuum (
), and your given distance of
, we can convert and cancel units to find the answer. The distance in m, using
, is
. Next, for the speed of light, we convert from s to min, using
, so we divide the speed of light by 60. Finally, dividing the distance between the Sun and Venus by the speed of light in km per min, we find that it is
6.405 min.
Answer:
As beams of particles and their associated energy are given off, the pulsar will lose energy slowly, which will decrease the rate of its rotation. The frequency of pulses would therefore decrease, so that fewer pulses are observed in a given time span. The strength of the pulse signal will also decrease so the pulses will become fainter. Eventually, the pulsar should rotate so slowly and have such a low emission of radiation that it would no longer be observable.