Answer:
a = -7.29 m / s²
Explanation:
For this exercise we must use Newton's second law,
F -W = m a
Force is electrical force
F = k q₁ q₂ / r²
k q₁ q₂ / r² -mg = m a
indicate that the charge of the two spheres is equal
q₁ = q₂ = q
a = (k q² / r² - m g) / m
a = k q² / m r² - g
Let's reduce the magnitudes to the SI system
m = 0.19 g (1kg / 1000 g) = 1.9 10⁻⁴ kg
q1 = q2 = q = -23.0 nC (1C / 10⁹ nC) = -23.0 10⁻⁹ C
r = 10.0 cm (1m / 100cm) = 0.1000 m
let's calculate
a = 9 10⁹ (23.0 10⁻⁹)² / (0.1000² 1.9 10⁻⁴) - 9.8
a = -7.29 m / s²
The negative sign indicates that the direction of this acceleration is downward
Answer:
To create a second harmonic the rope must vibrate at the frequency of 3 Hz
Explanation:
First we find the fundamental frequency of the rope. The fundamental frequency is the frequency of the rope when it vibrates in only 1 loop. Therefore,
f₁ = v/2L
where,
v = speed of wave = 36 m/s
L = Length of rope = 12 m
f₁ = fundamental frequency
Therefore,
f₁ = (36 m/s)/2(12 m)
f₁ = 1.5 Hz
Now the frequency of nth harmonic is given in general, as:
fn = nf₁
where,
fn = frequency of nth harmonic
n = No. of Harmonic = 2
f₁ = fundamental frequency = 1.5 Hz
Therefore,
f₂ = (2)(1.5 Hz)
<u>f₂ = 3 Hz</u>
The temperature of 20°C is equal to 68.0<span>°F</span>
Answer:
C) unbalanced
Explanation:
Equal forces acting in opposite directions are called balanced forces. Balanced forces acting on an object will not change the object's motion. When you add equal forces in opposite direction, the net force is zero.
She could text/email,report it to them personally,post up flyers,tell one person to spread it around