Answer:
2.49 * 10^(-4) m
Explanation:
Parameters given:
Frequency, f = 4.257 MHz = 4.257 * 10^6 Hz
Speed of sound in the body, v = 1.06 km/ = 1060 m/s
The speed of a wave is given as the product of its wavelength and frequency:
v = λf
Where λ = wavelength
This implies that:
λ = v/f
λ = (1060) / (4.257 * 10^6)
λ = 2.49 * 10^(-4) m
The wavelength of the sound in the body is 2.49 * 10^(-4) m.
Answer:
Object 3 has greatest acceleration.
Explanation:
Objects Mass Force
1 10 kg 4 N
2 100 grams 20 N
3 10 grams 4 N
4 1 kg 20 N
Acceleration of object 1,

Acceleration of object 2,

Acceleration of object 3,

Acceleration of object 4,

It is clear that the acceleration of object 3 is
and it is greatest of all. So, the correct option is (3).
Answer:
The torque is 0.31 Nm.
Explanation:
Electrical energy, E = 8400 J
time, t = 1 min
Angular speed, w = 2900 rpm = 303.53 rad/s
efficiency = 2/3 of input power
The toque is given by

Aperture is measured in F-stops, in which the f-stops is the amount of light allowed to pass through the aperture, which simply put means that the smaller the aperture, the higher the f-stops. What it does is reduce the amount of light that reaches the film, so the higher the f-stops, the less light reaches the film.
The free-body diagram is missing, but I assume the only forces acting on the box are the force F pushing the box, the weight of the object and the normal reaction of the surface.
Since the weight and the normal reaction acts in the vertical (y) direction, the only force acting on the box in the horizontal (x) direction is the horizontal component of the force F, which is given by

And so this is the net force in the x-direction.