Answer: The factor that lead to cyclopropane being less stable than the other cycloalkanes is the presence of a RING STRAIN.
Explanation:
In organic chemistry, the end carbon atoms of an open aliphatic chain can join together to form a closed system or ring to form cycloalkanes. Such compounds are known as cyclic compounds. Examples include cyclopropane, cyclobutane, cyclopentane and many among others.
Cyclopropane is less stable than other cycloalkanes mentioned above because of the presence of ring strain in its structural arrangement. The ring strain is the spatial orientation of atoms of the cycloalkane compounds which tend to give off a very high and non favourable energy. The release of heat energy which is stored in the bonds and molecules cause the ring to be UNSTABLE and REACTIVE.
The presence of the ring strain affects mainly the structures and the conformational function of the smaller cycloalkanes. cyclopropane, which is the smallest cycloalkane than the rest mentioned above, contains only 3 carbons with a small ring.
Answer:
2.35 M
Explanation:
Molarity is mol/L of solution. We have to convert the g to mol and the mL to L. G to mol uses the molar mass of the compound. The molar mass of NaNO₃ is 85.00g/mol.

Then you have to convert mL to L.

Now divide the mol by the L.

Round to the smallest number of significant figures = 2.35M
The answer is 111g of calcium chloride
To determine the upper bond
Ec(u) = EmVm + EpVp
Em is the elastic modulus of cobalt.
E₁ is the elastic modulus of the particulate
Vm is the volume fraction of cobalt
Vp is the volume fraction of particulate
substitute
Ec(u) = 200 (Vm) + 700 (Vp)
To determine the lower bound
Ec (l) = EmEp/VmEp+ VpEm
Substitute
Ec (l) = 200(700)/Vm(700) + Vp (200)
Ec (l) = 1400/7Vm+2Vp
Unbalanced it should be 2Zn+2Hcl=2ZnCl2+H2