Answer:
b) q large and m small
Explanation:
q is large and m is small
We'll express it as :
q > m
As we know the formula:
F = Eq
And we also know that :
F = Bqv
F = 
Bqv = 
or Eq = 
Assume that you want a velocity selector that will allow particles of velocity v⃗ to pass straight through without deflection while also providing the best possible velocity resolution. You set the electric and magnetic fields to select the velocity v⃗ . To obtain the best possible velocity resolution (the narrowest distribution of velocities of the transmitted particles) you would want to use particles with q large and m small.
Answer:
B) x^2+6x+8
Explanation:
x-4 | x^3+2x^2-16x-32
- x^3-4x^2 <-- (x-4)(x^2)
_________________
6x^2-16x-32
- 6x^2-24x <-- (x-4)(6x)
_________________
8x-32
- 8x-32 <- (x-4)(8)
___________________________
0 | x^2+6x+8
This means the answer is B) x^2+6x+8
Answer:
Explanation:
The relationship between angle and wavelength for maxima and minima in Young's double slit experiment is given by
For constructive interference

For Destructive interference

where 

m=order of maxima and minima
for second order maxima i.e. 
For smallest separation taking 



Gain in decibels is given by;
Gain db = 10*log (Po/Pi), where Po = Power output, Pin = Power input
Substituting;
Gain in db = 10 * log (50/5) = 10 db