Answer:
The acceleration of the sliding toboggan is, a = 4.9 m/s²
Explanation:
Given data,
The total weight of the toboggan, W = 1300 N
The slope is, Ф = 30°
The acceleration of a body under the influence of the gravitational field does not depend on its mass, size and shape in the absence of the air resistance.
Therefore,
The acceleration of the toboggan is given by the formula,
a = g Sin Ф
Substituting the given values in the above equation,
a = 9.8 x Sin 30°
= 4.9 m/s²
Hence, the acceleration of the sliding toboggan is, a = 4.9 m/s²
The (more) speed an object has, the (lower) the potential energy and the (higher) the kinetic energy. (I believe that is correct but it’s been a while since I’ve done this)
Answer:
For the given conditions the fundamental frequency is 3728.26 Hertz
Explanation:
We know that for a pipe open at one end and closed at other end the fundamental frequency is given by

where
f is the fundamental frequency
is the speed of sound in air in the surrounding conditions.
L = Length of the pipe
Applying values we get and using speed of sound as 343m/s we get
