ONE CAN perform this by doing an ideal experiment
by creating an isothermal system
its like you supply heat to a body and that body is present at very low temperature the amount of heat you supply is equal to the amount of heat lost by that body due to difference in the temperature of the body and the surrounding. heating curve will be constant as there is no change in the internal energy of the system ..
These two forces are called action and reaction forces and are the subject of Newton's third law of motion.
<em>Have a luvely day!</em>
Answer with Explanation:
We are given that
Diameter of fighter plane=2.3 m
Radius=
a.We have to find the angular velocity in radians per second if it spins=1200 rev/min
Frequency=
1 minute=60 seconds
Angular velocity=
Angular velocity=
b.We have to find the linear speed of its tip at this angular velocity if the plane is stationary on the tarmac.

c.Centripetal acceleration=
Centripetal acceleration==
I think the corect answer would be C. When a police officer receives information that you are speeding in your vehicle, she is using the frequency of the wave to measure the Doppler Effect. As the speed of a vehicle increases, the greater the change of the frequency of the waves would be transmitted to the radar guns which is being used by the police officer. Doppler effect is an effect that is observed in sound and light waves as these waves move away or to the direction of the observer. This is being used in many applications like in astronomy, weather balloons, the radar guns,and for underwater researches.
It is an intensive property as it varies with time and position within the system.