Answer:
V = 6 m/s
Explanation:
Given that,
Initial speed of an object is 20 m/s
Final speed of an object is 10 m/s
Time, t = 5 s
We need to find the average speed of the object during these 5 seconds. Let it is equal to V. Here, time is same. The average speed is given by :

So, the average speed of the object is 6 m/s.
Answer:
According to the law of conservation of energy, energy cannot be created or destroyed, although it can be changed from one form to another. KE + PE = constant. A simple example involves a stationary car at the top of a hill. As the car coasts down the hill, it moves faster and so it’s kinetic energy increases and it’s potential energy decreases. On the way back up the hill, the car converts kinetic energy to potential energy. In the absence of friction, the car should end up at the same height as it started.
This law had to be combined with the law of conservation of mass when it was determined that mass can be inter-converted with energy.
One can also imagine the energy transformation in a pendulum. When the ball is at the top of its swing, all of the pendulum’s energy is potential energy. When the ball is at the bottom of its swing, all of the pendulum’s energy is kinetic energy. The total energy of the ball stays the same but is continuously exchanged between kinetic and potential forms
The pressure of the air at the way its blowing
To contrast inner and outer planets we will start with the climate of the planets and then move on to there lighting. To start the planets closet to the sun, mercury, venus, earth and mars, are all hot compared to the further one, jupiter, saturn, uranus, neptune. This distance also makes the farthe away planets darker than the ones closer. Now to compare all the planets vary from either gass or solid, rocky or icy. All of them spin around the sun and all have objects spinning around them, moons.
The area of the Earth (Ae) that is irradiated by is given by:
Ae = 4πRe^2, where Re = Distance from Sun to Earth
Substituting;
Ae = 4π*(1.5*10^8*1000)^2 = 2.827*10^23 m^2
On the Earth, insolation (We) = Psun/Ae
Therefore,
Psun (Rate at which sun emits energy) = We*Ae = 1.4*2.827*10^23 = 3.958*10^23 kW = 3.958*10^26 W