Ideal Gas Law PV = nRT
THE GASEOUS STATE
Pressure atm
Volume liters
n moles
R L atm mol^-1 K^-1
Temperature Kelvin
pv = rt
divide both sides by v
pv/v = rt/v
p = rt/v
answer: p = rt/v
Ideal Gas Law: Density
PV = NRT
PV = mass/(mw)RT
mass/V = P (MW)/RT = density
Molar Mass:
Ideal Gas Law PV = NRT
PV = mass/(MW) RT
MW = mass * RT/PV
Measures of Gases:
Daltons Law of Partial Pressures; is the total pressure of a mixture of gases equals the sum of the partial pressures of the individual gases.
Total = P_ A + P_ B
P_ A V = n_ A RT
P_ B V = n_ B R T
Partial Pressures in Gas Mixtures:
P_ total = P_ A + P_ B
P_ A = n_ A RT/V P_ B = n_ B RTV
P_ total = P_ A + P_ B = n_ total RT/V
For Ideal Gasses:
P_ A = n_ A RT/V P_ total = n_ toatal RT/V
P_ A/P_ total = n_ A RTV/n_ total RTV
= n_ A/n_ total = X_ A
Therefore, P_ A = X_ A P_ total.
PV = nRT
P pressure
V volume
n Number of moles
R Gas Constant
T temperture (Kelvin.).
Hope that helps!!!!!! Have a great day : )
Answer:
Generally speaking, as the human population grows, our consumption of natural resources increases. More humans consume more freshwater, more land, more clothing, etc. ... For example, natural gas plants have become increasingly more efficient, thus humans are able to obtain more energy out of the same amount of gas.
Rapid population growth is detrimental to achieving economic and social progress and to sustainable management of the natural resource base. But there remains a sizeable gap between the private and social interest in fertility reduction, and this gap needs to be narrowed.
It is C, Left the Meet after her events were over
Answer:
increase
Explanation:
because the all the are are involved
Answer:
c
Explanation:
When charged particles move from one place to another then they tend to generate an energy due to their movement. This energy is known as electrical energy.