
- P is power
- R is resistance

Hence


- Therefore if power is low then resistance will be high.
The first bulb has less power hence it has greater filament resistance.
Before going to solve this question first we have to understand specific heat capacity of a substance .
The specific heat of a substance is defined as amount of heat required to raise the temperature of 1 gram of substance through one degree Celsius. Let us consider a substance whose mass is m.Let Q amount of heat is given to it as a result of which its temperature is raised from T to T'.
Hence specific heat of a substance is calculated as-
![c= \frac{Q}{m[T'-T]}](https://tex.z-dn.net/?f=c%3D%20%5Cfrac%7BQ%7D%7Bm%5BT%27-T%5D%7D)
Here c is the specific heat capacity.
The substance whose specific heat capacity is more will take more time to be heated up to a certain temperature as compared to a substance having low specific heat which is to be heated up to the same temperature.
As per the question John is experimenting on sand and water.Between sand and water,water has the specific heat 1 cal/gram per degree centigrade which is larger as compared to sand.Hence sand will be heated faster as compared to water.The substance which is heated faster will also cools faster.
From this experiment John concludes that water has more specific heat as compared to sand.
Answer: 12,600,000Cm
Explanation:
From the data's;
Charges(q) = 1.8 PC equal to 1.8 x 10^¹²C
Distance = 7 micrometer, is equal to 0.0000070m
From the equation of electric dipole moment, p= q x d, where q= charge, d=distance and p is the dipole moment.
Then we have 1.8x10^¹² x 0.0000070= 12,600,000Cm
NB: The charges are identical.
Answer:
i think its because u gave the almost every answer the same exact thing. all the questions have different ways of moving which means different forces for each one i hope this helps :)
Explanation:
Answer:
who you ganna throw that rock at child
Explanation: