Answer:
56400Joules
Explanation:
The quantity of heat required is expressed as;
Q = mL
m is the mass = 25g = 0.025kg
L is the latent heat of vaporization for steam = 2.256×10^6J/kg
Substitute into the formula as shown;
Q = 0.025×2.256×10^6
Q = 56400Joules
Hence the quantity of hear required is 56400Joules
Answer : The magnitude of the orbital angular momentum for its most energetic electron is, 
Explanation :
The formula used for orbital angular momentum is:

where,
L = orbital angular momentum
l = Azimuthal quantum number
As we are given the electronic configuration of Fe is, ![[Ar]3d^64s^2](https://tex.z-dn.net/?f=%5BAr%5D3d%5E64s%5E2)
Its most energetic electron will be for 3d electrons.
The value of azimuthal quantum number(l) of d orbital is, 2
That means, l = 2
Now put all the given values in the above formula, we get:


Therefore, the magnitude of the orbital angular momentum for its most energetic electron is, 
The frequency of the re-emitted light is identical to that of the absorbed light.
To find the answer, we need to know more about the frequency of light.
<h3> Why the re-emitted light has the same frequency?</h3>
- The wavelength of the light that is momentarily absorbed in glass and then re-emitted is the same, which explains why the re-emitted light has the same frequency as the absorbed light and the frequency of the absorbed light is the same.
- An electromagnetic wave's energy is inversely related to its frequency.
- The relationship between the wave's wavelength and frequency depends on the speed of light:
, c is the speed of light.
- Despite not having mass, light still has energy, and that energy is conserved.
- As a result, in order for there to be energy conservation, the energy of the light that is received and reemitted must be equal.
Thus, we can conclude that, the re-emitted light's frequency matches the absorbed light's frequency.
Learn more about frequency here:
brainly.com/question/26754018
#SPJ4
B is the correct answer . That make the most sense
Answer:
the correct answer is B
Explanation:
The law of reflection states that the angles of incidence and reflection on a surface are the same, the two rays and the normal are in the same part of the surface.
In this exercise indicate that the angle between the incident and reflected ray is 10, therefore the angle with respect to the normal that is a vertical line at the point of contact of the ray must be 5
Consequently the correct answer is B