Answer:
B
Explanation:
a straight yellow is a no pass zone
Answer:
0.888 ohm
Explanation:
We have given that the battery has an emf of 12 volt that E =12 volt
Terminal voltage V =18.4 volt
Current through the battery is =7.20 A
We have top find the internal resistance of the battery
Now according to Kirchhoff's law V=E+IR
So
So the value of internal resistance of battery is 0.888 ohm
Answer:
1. A1, B2, C3
2. 47.1°
Explanation:
Sum of forces in the x direction:
∑Fₓ = ma
f − Fᵥᵥ = 0
f = Fᵥᵥ
Sum of forces in the y direction:
∑Fᵧ = ma
N − W = 0
N = W
Sum of moments about the base of the ladder:
∑τ = Iα
Fᵥᵥ h − W (b/2) = 0
Fᵥᵥ h = ½ W b
Fᵥᵥ (l sin θ) = ½ W (l cos θ)
l Fᵥᵥ sin θ = ½ l W cos θ
The correct set of equations is A1, B2, C3.
At the smallest angle θ, f = Nμ. Substituting into the first equation, we get:
Nμ = Fᵥᵥ
Substituting the second equation into this equation, we get:
Wμ = Fᵥᵥ
Substituting this into the third equation, we get:
l (Wμ) sin θ = ½ l W cos θ
μ sin θ = ½ cos θ
tan θ = 1 / (2μ)
θ = atan(1 / (2μ))
θ = atan(1 / (2 × 0.464))
θ ≈ 47.1°
Answer:
a) λ = 189.43 10⁻⁹ m b) λ = 269.19 10⁻⁹ m
Explanation:
The diffraction network is described by the expression
d sin θ= m λ
Where m corresponds to the diffraction order
Let's use trigonometry to find the breast
tan θ = y / L
The diffraction spectrum is measured at very small angles, therefore
tan θ = sin θ / cos θ = sin θ
We replace
d y / L = m λ
Let's place in the first order m = 1
Let's look for the separation of the lines (d)
d = λ L / y
d = 501 10⁻⁹ 9.95 10⁻² / 15 10⁻²
d = 332.33 10⁻⁹ m
Now we can look for the wavelength of the other line
λ = d y / L
λ = 332.33 10⁻⁹ 8.55 10⁻²/15 10⁻²
λ = 189.43 10⁻⁹ m
Part B
The compound wavelength B
λ = 332.33 10⁻⁹ 12.15 10⁻² / 15 10⁻²
λ = 269.19 10⁻⁹ m