1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Jet001 [13]
3 years ago
14

a ball rolls horizontally of the edge of the cliff at 4 m/s, if the ball lands at a distance of 30 m from the base of the vertic

al cliff, what is the the hight of the cliff
Physics
1 answer:
algol133 years ago
5 0

Answer:

Approximately 281.25\; \rm m. (Assuming that the drag on this ball is negligible, and that g = 10\; \rm m \cdot s^{-2}.)

Explanation:

Assume that the drag (air friction) on this ball is negligible. Motion of this ball during the descent:

  • Horizontal: no acceleration, velocity is constant (at v(\text{horizontal}) is constant throughout the descent.)
  • Vertical: constant downward acceleration at g = 10\; \rm m \cdot s^{-2}, starting at 0\; \rm m \cdot s^{-1}.

The horizontal velocity of this ball is constant during the descent. The horizontal distance that the ball has travelled during the descent is also given: x(\text{horizontal}) = 30\; \rm m. Combine these two quantities to find the duration of this descent:

\begin{aligned}t &= \frac{x(\text{horizontal})}{v(\text{horizontal})} \\ &= \frac{30\; \rm m}{4\; \rm m \cdot s^{-1}} = 7.5\; \rm s\end{aligned}.

In other words, the ball in this question start at a vertical velocity of u = 0\; \rm m \cdot s^{-1}, accelerated downwards at g = 10\; \rm m \cdot s^{-2}, and reached the ground after t = 7.5\; \rm s.

Apply the SUVAT equation \displaystyle x(\text{vertical}) = -\frac{1}{2}\, g \cdot t^{2} + v_0\cdot t to find the vertical displacement of this ball.

\begin{aligned}& x(\text{vertical}) \\[0.5em] &= -\frac{1}{2}\, g \cdot t^{2} + v_0\cdot t\\[0.5em] &= - \frac{1}{2} \times 10\; \rm m \cdot s^{-2} \times (7.5\; \rm s)^{2} \\ & \quad \quad + 0\; \rm m \cdot s^{-1} \times 7.5\; s \\[0.5em] &= -281.25\; \rm m\end{aligned}.

In other words, the ball is 281.25\; \rm m below where it was before the descent (hence the negative sign in front of the number.) The height of this cliff would be 281.25\; \rm m\!.

You might be interested in
A 75-kg refrigerator is located on the 70th floor of a skyscraper (300meters a over the ground) What is the potential energy of
Nata [24]
Formula for potential energy is V=mgh, where m is mass in KG, g is earth acceleration (10 m/s^2), and h its height in meters. We know mass, acceleration is constant and also known, we know height also. Lets substitute
V=75*10*300=225000[J]=225[kJ] - its the answer
7 0
3 years ago
Which of the following displays has the highest hz frequency
Ganezh [65]

Answer:

Plasma

Explanation:

3 0
2 years ago
The period of rotation of Mars is 1 day and 37 minutes. Determine its frequency of rotation in Hertz.
Sholpan [36]

The frequency of rotation of Mars is 0.0000113 Hertz.

<u>Given the following data:</u>

  • Period = 1 day and 37 minutes.

To find the frequency of rotation in Hertz:

First of all, we would convert the the value of period in days and minutes to seconds because the period of oscillation of a physical object is measured in seconds.

<u>Conversion:</u>

1 day = 24 hours

24 hours to minutes = 60 × 24 = 1440 minutes

1440 + 37 = 1477 \; minutes

1 minute = 60 seconds

1477 minute = X seconds

Cross-multiplying, we have:

X = 60 × 1477

X = 88620 seconds

Now, we can find the frequency of rotation of Mars by using the formula:

Frequency = \frac{1}{Period}\\\\Frequency = \frac{1}{88620}

<em>Frequency </em><em>of rotation</em> = <em>0.0000113 Hertz</em>

Therefore, the frequency of rotation of Mars is 0.0000113 Hertz.

Read more: brainly.com/question/14708169

8 0
3 years ago
What math term is used to describe the shape of projectile motion?
algol13
Over short to medium distance, the shape of a projectile"s path is a PARABOLA.
8 0
3 years ago
A rock is dropped from a garage roof from rest. the roof is 6.0 m from the ground. determine the velocity of the rock as it hits
Dmitrij [34]

From rest, a rock is dropped from a garage roof. The roof is 6.0 meters above ground level. The rock will reach the earth at a speed of 10.849 meters per second.

<h3>What is velocity?</h3>

The change of displacement with respect to time is defined as the velocity.  Velocity is a vector quantity.

it is a time-based component. Velocity at any angle is resolved to get its component of x and y-direction.

Given data:

V(Final velocity)=? (m/sec)

h(height)= 6.0 m

u(Initial velocity)=0 m/sec

g(gravitational acceleration)=9.81 m/s²

Newton's third equation of motion:

\rm v_y^2 = u_y^2+ 2gh \\\\\rm v_y^2 = 0+ 2gh\\\\\  v_y= \sqrt{2\times 9.81 \ (m/s^2)\times 6.0 (m)} \\\\ v_y=10.849 \ m/sec

Hence, the velocity of the rock as it hits the ground will be 10.849 m/sec.

To learn more about the velocity refer to the link ;

brainly.com/question/862972

#SPJ1

7 0
2 years ago
Other questions:
  • **HELP ASAP**
    13·1 answer
  • What is the closest of a measurement to the actual value being measured
    10·1 answer
  • 2.85 A police car is traveling at a velocity of 18.0 m/s due north, when a car zooms by at a constant velocity of 42.0 m/s due n
    11·1 answer
  • Un auto recorre una carretera en línea recta de 10km y tarda 8 minutos ¿Cual es su velocidad en km/h?
    14·1 answer
  • LEMME GET SOME HELO HERE PLEASE :))
    5·2 answers
  • You observe a distant galaxy. You find that a spectral line, resulting from an electron transition in hydrogen, is shifted from
    15·1 answer
  • Which type of radioactive decay results in no change in mass number and atomic number for the starting nucleus?
    8·1 answer
  • What is a sentence for crater
    11·2 answers
  • What happens in a chemical reaction?
    10·1 answer
  • When running a long distance during the Texas summer which of the following would happen?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!