Using the <em>normal distribution and the central limit theorem</em>, we have that:
a) A normal model with mean 0.3 and standard deviation of 0.0458 should be used. 
b) There is a 0.2327 = 23.27% probability that more than one third of this sample wear contacts.
<h3>Normal Probability Distribution</h3>
In a normal distribution with mean  and standard deviation
 and standard deviation  , the z-score of a measure X is given by:
, the z-score of a measure X is given by:

- It measures how many standard deviations the measure is from the mean. 
- After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.
- By the Central Limit Theorem, for a <u>proportion p in a sample of size n</u>, the sampling distribution of sample proportion is approximately normal with mean  and standard deviation and standard deviation , as long as , as long as and and . .
In this problem:
- 30% of students at a university wear contact lenses, hence p = 0.3.
- We randomly pick 100 students, hence n = 100.
Item a:


Hence a normal model is appropriated.
The mean and the standard deviation are given as follows:


Item b:
The probability is <u>1 subtracted by the p-value of Z when X = 1/3 = 0.3333</u>, hence:

By the Central Limit Theorem



 has a p-value of 0.7673.
 has a p-value of 0.7673.
1 - 0.7673 = 0.2327.
0.2327 = 23.27% probability that more than one third of this sample wear contacts.
To learn more about the <em>normal distribution and the central limit theorem</em>, you can take a look at brainly.com/question/24663213
 
        
             
        
        
        
Answer:
slope is 2
it represents the difference between the 2 points
 
        
             
        
        
        
$10.29 (14.7)(.3)= 4.41. 14.7-4.41
        
             
        
        
        
Answer:
Step-by-step explanation:
Given that in a randomized controlled trial in Kenya, insecticide treated bednets were tested as a way to reduce malaria. Among 343 infants using bednets, 15 developed malaria. Among 294 infants not using bednets, 27 developed malaria.
H0: p1=p2
H1: p1 <p2
(one tailed test)
p1 = 15/343:p2 =27/294:
Difference	4.813 %
95% CI	0.9160% to 9.0217%
Chi-squared	5.947
DF  1
Significance level	P = 0.0073
Since p <0.01 we reject null hypothesis.
 
        
             
        
        
        
Answer:
a cyclist covers a distance of 15km in 2hours calculate his speeda cyclist covers a distance of 15km in 2hours calculate his speeda cyclist covers a distance of 15km in 2hours calculate his speed