Answer:
0.231 N
Explanation:
To get from rest to angular speed of 6.37 rad/s within 9.87s, the angular acceleration of the rod must be

If the rod is rotating about a perpendicular axis at one of its end, then it's momentum inertia must be:

According to Newton 2nd law, the torque required to exert on this rod to achieve such angular acceleration is

So the force acting on the other end to generate this torque mush be:

If it was removed it would not be a predator
Answer:
An object slides down an inclined plane at a constant velocity if the net force on the object is zero. We can use this fact to measure the coefficient of kinetic friction between two objects.
Explanation:
give me brainliest please!
Answer:
12.25 meters
Explanation:
s=1/2(v+u)t
s= displacement
v= final velocity
u= initial velocity
t= time
7m/s+0m/s divide by 2= 3.5 m/s velocity Times 3.5 seconds= 12.25 meters
Let us follow the motion of the hammer first. Because the elevator is in motion, when he drops the hammer, because of inertia, there is a slight moment when the hammer also rises with the elevator. Eventually it will reach its highest peak and drop down to the floor. So, the total time for the hammer to reach the floor would include: (1) the time for it to rise with the elevator to its highest peak and (2) the time for the free fall from the highest peak to the floor.
1.) Time for it to rise with the elevator to its highest peak:
Hmax = v²/2g = (6 m/s)²/2(9.81 m/s²) = 1.835 m
Time to reach 1.835 m = 1.835 m * 1 s/6 m = 0.306 s
Time for the free fall from the highest peak to the floor:
t = √2y/g, where y is the total height
y = 1.835 m + 42 m = 43.835 m
So,
t = √2(43.835 m )/(9.81 m/s²) = 2.989 s
Therefore, the total time is 0.306 s + 2.989 s = 3.3 seconds
2.) Velocity of impact of a free-falling body is:
v = √2gy
v = √2(9.81 m/s²)(43.835 m)
v = 29.33 m/s